Zhang Weiwei, Wang Mingli, Zhang Hong, Huang Xianglong, Shen Boyuan, Song Bin, Fu Lin, Lu Ke
Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, China.
School of Chemistry and Chemical Engineering, Qufu Normal University Qufu, Shandong, 273165, China.
Angew Chem Int Ed Engl. 2024 Feb 5;63(6):e202317776. doi: 10.1002/anie.202317776. Epub 2024 Jan 4.
The broader implementation of current all-solid-state Na-S batteries is still plagued by high operation temperature and inefficient sulfur utilization. And the uncontrollable sulfur speciation pathway along with the sluggish polysulfide redox kinetics further compromise the theoretical potentials of Na-S chemistry. Herein, we report a confined bidirectional tandem electrocatalysis effect to tune polysulfide electrochemistry in a novel low-temperature (80 °C) all-solid-state Na-S battery that utilizes Na Zr Si PO ceramic membrane as a platform. The bifunctional hollow sulfur matrix consisting binary atomically dispersed MnN and CoN hotspots was fabricated using a sacrificial template process. Upon discharge, CoN sites activate sulfur species and catalyze long-chain to short-chain polysulfides reduction, while MnN centers substantially accelerate the low-kinetic Na S to Na S directly conversion, manipulating the uniform deposition of electroactive Na S and avoiding the formation of irreversible products (e.g., Na S ). The intrinsic synergy of two catalytic centers benefits the Na S decomposition and minimizes its activation barrier during battery recharging and then efficiently mitigate the cathodic passivation. As a result, the stable cycling of all-solid-state Na-S cell delivers an attractive reversible capacity of 1060 mAh g with a high CE of 98.5 % and a high energy of 1008 Wh kg , comparable to the liquid electrolyte cells.
目前全固态钠硫电池的广泛应用仍受到高工作温度和硫利用率低的困扰。而且,不可控的硫形态转化途径以及缓慢的多硫化物氧化还原动力学进一步削弱了钠硫化学的理论潜力。在此,我们报道了一种受限的双向串联电催化效应,以在一种新型低温(80°C)全固态钠硫电池中调节多硫化物电化学,该电池以NaZrSiPO陶瓷膜为平台。使用牺牲模板法制备了由二元原子分散的MnN和CoN热点组成的双功能中空硫基体。放电时,CoN位点激活硫物种并催化长链多硫化物向短链多硫化物的还原,而MnN中心则显著加速低动力学的Na₂S₄向Na₂S的直接转化,控制电活性Na₂S的均匀沉积并避免形成不可逆产物(如Na₂S₅)。两个催化中心的内在协同作用有利于Na₂S的分解,并在电池充电过程中最小化其活化能垒,进而有效减轻阴极钝化。结果,全固态钠硫电池的稳定循环提供了1060 mAh g的有吸引力的可逆容量,高库仑效率为98.5%,高能量为1008 Wh kg,与液体电解质电池相当。