Suppr超能文献

轴向氟配位提高了室温钠硫电池中Fe单原子催化剂的活性和耐久性。

Axial fluorine coordination boosts the activity and durability of Fe single-atom catalysts in room-temperature Na-S batteries.

作者信息

Zhong Xue, Huang Yujie, Cai Jieming, Cai Dongyang, He Zidong, Geng Zhenglei, Deng Wentao, Zou Guoqiang, Hou Hongshuai, Ji Xiaobo

机构信息

College of Chemistry and Chemical Engineering, Central South University Changsha 410083 P. R. China

出版信息

Chem Sci. 2025 Sep 4. doi: 10.1039/d5sc05972k.

Abstract

Single-atom catalysts (SACs) hold promise for addressing challenges of polysulfide shuttle and sluggish sulfur reduction reaction (SRR) in room-temperature (RT) Na-S batteries. However, their structural durability under harsh electrochemical conditions remains a critical concern. Herein, we propose an effective strategy to optimize and stabilize the active sites of Fe single atoms (Fe) by modulating the local geometries through axial fluorine (F) coordination, thus significantly alleviating the stability problems faced by conventional high-performance but deactivation-prone Fe-N-C catalysts. Density functional theory (DFT) calculations and experimental results confirm that the enhanced Fe-F interactions in the second shell layer play a key role in maintaining the structural integrity of the single atoms during synthesis and operation and effectively inhibit the agglomeration behavior of Fe atoms. The F axial coordination with the optimized electronic structure enhanced the d-p hybridization between the Fe 3d orbitals and the sulfur intermediates, which significantly promoted the SRR kinetics and catalytic durability. Through comprehensive spectroscopic investigations, we further elucidate that the sulfur species undergo quasi-solid-solid conversion pathways on Fe-FCNT@S electrodes, effectively suppressing polysulfide dissolution. This work establishes a universal paradigm for designing durable SAC systems through rational coordination engineering while providing fundamental insights into structure-stability relationships for advanced metal-sulfur batteries.

摘要

单原子催化剂(SACs)有望解决室温(RT)钠硫电池中多硫化物穿梭和缓慢的硫还原反应(SRR)问题。然而,它们在苛刻电化学条件下的结构耐久性仍然是一个关键问题。在此,我们提出了一种有效策略,通过轴向氟(F)配位调节局部几何结构来优化和稳定铁单原子(Fe)的活性位点,从而显著缓解传统高性能但易失活的Fe-N-C催化剂所面临的稳定性问题。密度泛函理论(DFT)计算和实验结果证实,第二壳层中增强的Fe-F相互作用在合成和运行过程中维持单原子的结构完整性以及有效抑制Fe原子的团聚行为方面起着关键作用。具有优化电子结构的F轴向配位增强了Fe 3d轨道与硫中间体之间的d-p杂化,显著促进了SRR动力学和催化耐久性。通过全面的光谱研究,我们进一步阐明硫物种在Fe-FCNT@S电极上经历准固-固转化途径,有效抑制多硫化物溶解。这项工作通过合理的配位工程建立了设计耐用SAC系统的通用范式,同时为先进金属硫电池的结构-稳定性关系提供了基本见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2809/12442284/d05a1163587d/d5sc05972k-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验