文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

术前预测肝细胞癌微血管侵犯:钆塞酸二钠增强 MRI 的影像组学模型。

Preoperative prediction of microvascular invasion in hepatocellular cancer: a radiomics model using Gd-EOB-DTPA-enhanced MRI.

机构信息

Department of Radiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.

Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.

出版信息

Eur Radiol. 2019 Sep;29(9):4648-4659. doi: 10.1007/s00330-018-5935-8. Epub 2019 Jan 28.


DOI:10.1007/s00330-018-5935-8
PMID:30689032
Abstract

OBJECTIVES: Preoperative prediction of microvascular invasion (MVI) in patients with hepatocellular cancer (HCC) is important for surgery strategy making. We aimed to develop and validate a combined intratumoural and peritumoural radiomics model based on gadolinium-ethoxybenzyl-diethylenetriamine (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI) for preoperative prediction of MVI in primary HCC patients. METHODS: This study included a training cohort of 110 HCC patients and a validating cohort of 50 HCC patients. All the patients underwent preoperative Gd-EOB-DTPA-enhanced MRI examination and curative hepatectomy. The volumes of interest (VOIs) around the hepatic lesions including intratumoural and peritumoural regions were manually delineated in the hepatobiliary phase of MRI images, from which quantitative features were extracted and analysed. In the training cohort, machine-learning method was applied for dimensionality reduction and selection of the extracted features. RESULTS: The proportion of MVI-positive patients was 38.2% and 40.0% in the training and validation cohort, respectively. Supervised machine learning selected ten features to establish a predictive model for MVI. The area under the receiver operating characteristic curve (AUC), sensitivity, specificity of the combined intratumoural and peritumoural radiomics model in the training and validation cohort were 0.85 (95% confidence interval (CI), 0.77-0.93), 88.2%, 76.2%, and 0.83 (95% CI, 0.71-0.95), 90.0%, 75.0%, respectively. CONCLUSIONS: We evaluate quantitative Gd-EOB-DTPA-enhanced MRI image features of both intratumoural and peritumoural regions and provide an effective radiomics-based model for the prediction of MVI in HCC patients, and may therefore help clinicians make precise decisions regarding treatment before the surgery. KEY POINTS: • An effective radiomics model for prediction of microvascular invasion in HCC patients is established. • The radiomics model is superior to the radiologist in prediction of MVI. • The radiomics model can help clinicians in pretreatment decision making.

摘要

目的:术前预测肝细胞癌(HCC)的微血管侵犯(MVI)对于手术策略的制定非常重要。本研究旨在基于钆塞酸二钠(Gd-EOB-DTPA)增强磁共振成像(MRI),建立并验证一种联合肿瘤内和肿瘤周围的放射组学模型,用于预测原发性 HCC 患者的 MVI。

方法:本研究纳入了一个训练队列(110 例 HCC 患者)和一个验证队列(50 例 HCC 患者)。所有患者均接受了术前 Gd-EOB-DTPA 增强 MRI 检查和根治性肝切除术。手动在 MRI 肝胆期图像上勾画肝脏病变的感兴趣区(VOI),包括肿瘤内和肿瘤周围区域,并提取和分析定量特征。在训练队列中,采用机器学习方法进行降维和提取特征的选择。

结果:在训练队列和验证队列中,MVI 阳性患者的比例分别为 38.2%和 40.0%。有监督机器学习选择了 10 个特征来建立 MVI 的预测模型。在训练队列和验证队列中,联合肿瘤内和肿瘤周围放射组学模型的受试者工作特征曲线(ROC)下面积(AUC)、敏感性、特异性分别为 0.85(95%置信区间(CI),0.77-0.93)、88.2%、76.2%和 0.83(95%CI,0.71-0.95)、90.0%、75.0%。

结论:我们评估了肿瘤内和肿瘤周围区域的定量 Gd-EOB-DTPA 增强 MRI 图像特征,并提供了一种有效的基于放射组学的 HCC 患者 MVI 预测模型,这可能有助于临床医生在手术前做出精确的治疗决策。

关键点:

  1. 建立了一种用于预测 HCC 患者 MVI 的有效放射组学模型。
  2. 该放射组学模型在预测 MVI 方面优于放射科医生。
  3. 该放射组学模型有助于临床医生在术前做出决策。

相似文献

[1]
Preoperative prediction of microvascular invasion in hepatocellular cancer: a radiomics model using Gd-EOB-DTPA-enhanced MRI.

Eur Radiol. 2019-1-28

[2]
Pretreatment prediction of immunoscore in hepatocellular cancer: a radiomics-based clinical model based on Gd-EOB-DTPA-enhanced MRI imaging.

Eur Radiol. 2019-1-21

[3]
Comparison of non-radiomics imaging features and radiomics models based on contrast-enhanced ultrasound and Gd-EOB-DTPA-enhanced MRI for predicting microvascular invasion in hepatocellular carcinoma within 5 cm.

Eur Radiol. 2023-9

[4]
Radiomics and nomogram of magnetic resonance imaging for preoperative prediction of microvascular invasion in small hepatocellular carcinoma.

World J Gastroenterol. 2022-8-21

[5]
Preoperative Evaluation of Gd-EOB-DTPA-Enhanced MRI Radiomics-Based Nomogram in Small Solitary Hepatocellular Carcinoma (≤3 cm) With Microvascular Invasion: A Two-Center Study.

J Magn Reson Imaging. 2022-11

[6]
The value of the signal intensity of peritumoral tissue on Gd-EOB-DTPA dynamic enhanced MRI in assessment of microvascular invasion and pathological grade of hepatocellular carcinoma.

Medicine (Baltimore). 2021-5-21

[7]
Using pre-operative radiomics to predict microvascular invasion of hepatocellular carcinoma based on Gd-EOB-DTPA enhanced MRI.

BMC Med Imaging. 2022-9-3

[8]
Radiomics Analysis of MR Imaging with Gd-EOB-DTPA for Preoperative Prediction of Microvascular Invasion in Hepatocellular Carcinoma: Investigation and Comparison of Different Hepatobiliary Phase Delay Times.

Biomed Res Int. 2021-1-7

[9]
Value of gadoxetic acid-enhanced MRI for microvascular invasion of small hepatocellular carcinoma: a retrospective study.

BMC Med Imaging. 2021-3-5

[10]
Comparison of Conventional Gadoxetate Disodium-Enhanced MRI Features and Radiomics Signatures With Machine Learning for Diagnosing Microvascular Invasion.

AJR Am J Roentgenol. 2021-6

引用本文的文献

[1]
Radiomics-based machine-learning method to predict extrahepatic metastasis in hepatocellular carcinoma after hepatectomy: a multicenter study.

Sci Rep. 2025-8-14

[2]
MRI Imaging Biomarkers for Prognostication of Hepatocellular Carcinoma.

J Korean Soc Radiol. 2025-5

[3]
Intratumoral and Peritumoral Radiomics Based on DCE-MRI for Prediction of Microvascular Invasion Grading in Solitary Hepatocellular Carcinoma (≤3 cm).

J Hepatocell Carcinoma. 2025-5-30

[4]
Gd-EOB-DTPA-enhanced MRI radiomics and deep learning models to predict microvascular invasion in hepatocellular carcinoma: a multicenter study.

BMC Med Imaging. 2025-3-31

[5]
MRI-based intra-tumoral ecological diversity features and temporal characteristics for predicting microvascular invasion in hepatocellular carcinoma.

Front Oncol. 2025-3-3

[6]
New frontiers in hepatocellular carcinoma: Precision imaging for microvascular invasion prediction.

World J Gastroenterol. 2025-2-28

[7]
Interpretable machine learning models for predicting skip metastasis in cN0 papillary thyroid cancer based on clinicopathological and elastography radiomics features.

Front Oncol. 2025-1-7

[8]
Prediction of immunotherapy response in nasopharyngeal carcinoma: a comparative study using MRI-based radiomics signature and programmed cell death ligand 1 expression score.

Eur Radiol. 2025-1-24

[9]
Advancements in Artificial Intelligence-Enhanced Imaging Diagnostics for the Management of Liver Disease-Applications and Challenges in Personalized Care.

Bioengineering (Basel). 2024-12-9

[10]
Prediction of the early hepatocellular carcinoma development in patients with chronic hepatitis B virus infection using gadoxetic acid-enhanced magnetic resonance imaging.

BMC Cancer. 2024-11-19

本文引用的文献

[1]
Prediction of Microvascular Invasion in Hepatocellular Carcinoma: Preoperative Gd-EOB-DTPA-Dynamic Enhanced MRI and Histopathological Correlation.

Contrast Media Mol Imaging. 2018-1-23

[2]
MRI features can predict EGFR expression in lower grade gliomas: A voxel-based radiomic analysis.

Eur Radiol. 2017-7-28

[3]
Defining the biological basis of radiomic phenotypes in lung cancer.

Elife. 2017-7-21

[4]
Intratumoral and peritumoral radiomics for the pretreatment prediction of pathological complete response to neoadjuvant chemotherapy based on breast DCE-MRI.

Breast Cancer Res. 2017-5-18

[5]
Preoperative gadoxetic acid-enhanced MRI for predicting microvascular invasion in patients with single hepatocellular carcinoma.

J Hepatol. 2017-5-6

[6]
Dermatologist-level classification of skin cancer with deep neural networks.

Nature. 2017-2-2

[7]
Malignancy characterization of hepatocellular carcinomas based on texture analysis of contrast-enhanced MR images.

J Magn Reson Imaging. 2017-5

[8]
Liver Tumor Segmentation from MR Images Using 3D Fast Marching Algorithm and Single Hidden Layer Feedforward Neural Network.

Biomed Res Int. 2016

[9]
Recent Advances in the Imaging Diagnosis of Hepatocellular Carcinoma: Value of Gadoxetic Acid-Enhanced MRI.

Liver Cancer. 2016-2

[10]
Interobserver and Intraobserver Reproducibility with Volume Dynamic Contrast Enhanced Computed Tomography (DCE-CT) in Gastroesophageal Junction Cancer.

Diagnostics (Basel). 2016-2-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索