Xiang Bo, Xiong Wei
Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310030, China.
Department of Chemistry and Biochemistry, University of California, San Diego, California 92126, United States.
Chem Rev. 2024 Mar 13;124(5):2512-2552. doi: 10.1021/acs.chemrev.3c00662. Epub 2024 Feb 28.
Molecular polaritons are quasiparticles resulting from the hybridization between molecular and photonic modes. These composite entities, bearing characteristics inherited from both constituents, exhibit modified energy levels and wave functions, thereby capturing the attention of chemists in the past decade. The potential to modify chemical reactions has spurred many investigations, alongside efforts to enhance and manipulate optical responses for photonic and quantum applications. This Review centers on the experimental advances in this burgeoning field. Commencing with an introduction of the fundamentals, including theoretical foundations and various cavity architectures, we discuss outcomes of polariton-modified chemical reactions. Furthermore, we navigate through the ongoing debates and uncertainties surrounding the underpinning mechanism of this innovative method of controlling chemistry. Emphasis is placed on gaining a comprehensive understanding of the energy dynamics of molecular polaritons, in particular, vibrational molecular polaritons─a pivotal facet in steering chemical reactions. Additionally, we discuss the unique capability of coherent two-dimensional spectroscopy to dissect polariton and dark mode dynamics, offering insights into the critical components within the cavity that alter chemical reactions. We further expand to the potential utility of molecular polaritons in quantum applications as well as precise manipulation of molecular and photonic polarizations, notably in the context of chiral phenomena. This discussion aspires to ignite deeper curiosity and engagement in revealing the physics underpinning polariton-modified molecular properties, and a broad fascination with harnessing photonic environments to control chemistry.
分子极化激元是分子模式与光子模式杂交产生的准粒子。这些复合实体兼具两种成分的特性,展现出修正后的能级和波函数,因此在过去十年间吸引了化学家的关注。改变化学反应的潜力激发了许多研究,同时人们也努力增强和操纵光子及量子应用中的光学响应。本综述聚焦于这一新兴领域的实验进展。首先介绍基本原理,包括理论基础和各种腔结构,接着讨论极化激元修饰化学反应的成果。此外,我们梳理了围绕这种控制化学的创新方法的基础机制存在的持续争议和不确定性。重点在于全面理解分子极化激元的能量动力学,特别是振动分子极化激元——这是引导化学反应的关键方面。此外,我们讨论了相干二维光谱剖析极化激元与暗模式动力学的独特能力,从而深入了解腔内改变化学反应的关键成分。我们还进一步探讨了分子极化激元在量子应用中的潜在效用,以及对分子和光子极化的精确操纵,特别是在手性现象的背景下。本讨论旨在激发更深入的好奇心,并促使人们更积极地揭示极化激元修饰分子性质背后的物理原理,以及对利用光子环境控制化学产生广泛兴趣。