Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States.
Acc Chem Res. 2023 Apr 4;56(7):776-786. doi: 10.1021/acs.accounts.2c00796. Epub 2023 Mar 17.
ConspectusWhen molecular vibrational modes strongly couple to virtual states of photonic modes, new molecular vibrational polariton states are formed, along with a large population of dark reservoir modes. The polaritons are much like the bonding and antibonding molecular orbitals when atomic orbitals form molecular bonds, while the dark modes are like nonbonding orbitals. Because the polariton states are half-matter and half-light, whose energy is shifted from the parental states, polaritons are predicted to modify chemistry under thermally activated conditions, leading to an exciting and emerging field known as polariton chemistry that could potentially shift paradigms in chemistry. Despite several published results supporting this concept, the chemical physics and mechanism of polariton chemistry remain elusive. One reason for this challenge is that previous works cannot differentiate polaritons from dark modes. This limitation makes delineating the contributions to chemistry from polaritons and dark states difficult. However, this level of insight is critical for developing a solid mechanism for polariton chemistry to design and predict the outcome of strong coupling with any given reaction. My group addressed the challenge of differentiating the dynamics of polaritons and dark modes by ultrafast two-dimensional infrared (2D IR) spectroscopy. Specifically, (1) we found that polaritons can facilitate intra- and intermolecular vibrational energy transfer, opening a pathway to control vibrational energy flow in liquid-phase molecular systems, and (2) by studying a single-step isomerization event, we verified that indeed polaritons can modify chemical dynamics under strong coupling conditions, but in contrast, the dark modes behave like uncoupled molecules and do not change the dynamics. This finding confirmed the central concept of polariton chemistry: polaritons modify the potential energy landscape of reactions. The result also clarified the role of dark modes, which lays a critical foundation for designing cavities for future polariton chemistry. Aside from using 2D IR spectroscopy to study polariton chemistry, we also used the same technique to develop molecular polaritons into a potential quantum simulation platform. We demonstrated that polaritons have Rabi oscillations, and using a checkerboard cavity design, we showed that polaritons could have large nonlinearity across space. We further used the checkerboard polaritons to simulate coherence transfer and visualize it. A unidirectional coherence transfer was observed, indicating non-Hermitian dynamics. The highlighted efforts in this Account provide a solid understanding of the capability of polaritons for chemistry and quantum information science. I conclude this Account by discussing a few challenges for moving polariton chemistry toward being predictable and making the polariton quantum platform a complement to existing systems.
概述
当分子振动模式与光子模式的虚拟态强烈耦合时,新的分子振动极化激元态就会形成,同时还有大量的暗态储库模式。极化激元类似于原子轨道形成分子键时的成键和反键分子轨道,而暗态类似于非键轨道。由于极化激元态是半物质和半光的,其能量从母体状态偏移,因此预测极化激元在热激活条件下会改变化学性质,从而形成一个令人兴奋的新兴领域,即极化激元化学,这可能会改变化学的范式。尽管有一些已发表的结果支持这一概念,但极化激元化学的物理化学和机制仍然难以捉摸。造成这一挑战的一个原因是,之前的工作无法将极化激元与暗态区分开来。这种局限性使得从极化激元和暗态来区分化学贡献变得困难。然而,对于为极化激元化学建立一个坚实的机制来设计和预测与任何给定反应的强耦合的结果来说,这种深入的了解是至关重要的。我的研究小组通过超快二维红外(2D IR)光谱解决了区分极化激元和暗态动力学的挑战。具体来说:(1)我们发现极化激元可以促进分子内和分子间的振动能量转移,为控制液相分子系统中的振动能量流动开辟了一条途径;(2)通过研究单个步骤的异构化事件,我们验证了在强耦合条件下,极化激元确实可以改变化学动力学,但相反,暗态表现得像未耦合的分子,不会改变动力学。这一发现证实了极化激元化学的核心概念:极化激元可以改变反应的势能面。这一结果还澄清了暗态的作用,为未来的极化激元化学设计腔奠定了关键基础。除了使用 2D IR 光谱来研究极化激元化学外,我们还使用相同的技术将分子极化激元发展成为一个潜在的量子模拟平台。我们证明了极化激元具有拉比振荡,并且使用棋盘形腔设计,我们表明极化激元在空间上具有很大的非线性。我们进一步使用棋盘形极化激元来模拟相干转移并对其进行可视化。观察到单向相干转移,表明存在非厄米动力学。本账户中的重点工作为理解极化激元在化学和量子信息科学中的作用提供了坚实的基础。最后,我讨论了将极化激元化学推向可预测性的几个挑战,并讨论了将极化激元量子平台作为现有系统的补充的几个挑战。