Combriat Thomas, Olsen Petter Angell, Låstad Silja Borring, Malthe-Sørenssen Anders, Krauss Stefan, Dysthe Dag Kristian
Njord Centre, Department of Physics, University of Oslo, P.O. Box 1048 Blindern, Oslo, 0316, Norway.
Hybrid Technology Hub, University of Oslo, Institute of Basic Medical Sciences P.O. Box 1110 Blindern, Oslo, 0317, Norway.
Adv Sci (Weinh). 2024 Apr;11(16):e2307929. doi: 10.1002/advs.202307929. Epub 2024 Feb 28.
In this study, a novel, high content technique using a cylindrical acoustic transducer, stroboscopic fast imaging, and homodyne detection to recover the mechanical properties (dynamic shear modulus) of living adherent cells at low ultrasonic frequencies is presented. By analyzing the micro-oscillations of cells, whole populations are simultaneously mechanotyped with sub-cellular resolution. The technique can be combined with standard fluorescence imaging allowing to further cross-correlate biological and mechanical information. The potential of the technique is demonstrated by mechanotyping co-cultures of different cell types with significantly different mechanical properties.
在本研究中,提出了一种新颖的高内涵技术,该技术使用圆柱形声换能器、频闪快速成像和零差检测,以在低超声频率下恢复活贴壁细胞的机械性能(动态剪切模量)。通过分析细胞的微振荡,对整个细胞群体同时进行亚细胞分辨率的机械分型。该技术可与标准荧光成像相结合,从而进一步交叉关联生物学和机械信息。通过对具有显著不同机械性能的不同细胞类型的共培养物进行机械分型,证明了该技术的潜力。