School of Software, Taiyuan University of Technology, Taiyuan 030024, People's Republic of China.
School of International Education, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
Phys Med Biol. 2024 Apr 9;69(8). doi: 10.1088/1361-6560/ad2e6b.
. Honeycomb lung is a rare but severe disease characterized by honeycomb-like imaging features and distinct radiological characteristics. Therefore, this study aims to develop a deep-learning model capable of segmenting honeycomb lung lesions from Computed Tomography (CT) scans to address the efficacy issue of honeycomb lung segmentation.. This study proposes a sparse mapping-based graph representation segmentation network (SM-GRSNet). SM-GRSNet integrates an attention affinity mechanism to effectively filter redundant features at a coarse-grained region level. The attention encoder generated by this mechanism specifically focuses on the lesion area. Additionally, we introduce a graph representation module based on sparse links in SM-GRSNet. Subsequently, graph representation operations are performed on the sparse graph, yielding detailed lesion segmentation results. Finally, we construct a pyramid-structured cascaded decoder in SM-GRSNet, which combines features from the sparse link-based graph representation modules and attention encoders to generate the final segmentation mask.. Experimental results demonstrate that the proposed SM-GRSNet achieves state-of-the-art performance on a dataset comprising 7170 honeycomb lung CT images. Our model attains the highest IOU (87.62%), Dice(93.41%). Furthermore, our model also achieves the lowest HD95 (6.95) and ASD (2.47).The SM-GRSNet method proposed in this paper can be used for automatic segmentation of honeycomb lung CT images, which enhances the segmentation performance of Honeycomb lung lesions under small sample datasets. It will help doctors with early screening, accurate diagnosis, and customized treatment. This method maintains a high correlation and consistency between the automatic segmentation results and the expert manual segmentation results. Accurate automatic segmentation of the honeycomb lung lesion area is clinically important.
蜂巢肺是一种罕见但严重的疾病,其特征是存在蜂巢样成像特征和明显的放射学特征。因此,本研究旨在开发一种深度学习模型,能够从计算机断层扫描(CT)扫描中分割蜂巢肺病变,以解决蜂巢肺分割的功效问题。
本研究提出了一种基于稀疏映射的图表示分割网络(SM-GRSNet)。SM-GRSNet 集成了注意亲和力机制,可有效过滤粗粒度区域级别的冗余特征。该机制生成的注意编码器专门关注病变区域。此外,我们在 SM-GRSNet 中引入了基于稀疏链接的图表示模块。随后,在稀疏图上执行图表示操作,得到详细的病变分割结果。最后,我们在 SM-GRSNet 中构建了一个金字塔结构的级联解码器,它结合了来自稀疏链接的图表示模块和注意编码器的特征,生成最终的分割掩模。
实验结果表明,所提出的 SM-GRSNet 在包含 7170 个蜂巢肺 CT 图像的数据集上取得了最先进的性能。我们的模型实现了最高的 IOU(87.62%)、Dice(93.41%)。此外,我们的模型还实现了最低的 HD95(6.95)和 ASD(2.47)。本文提出的 SM-GRSNet 方法可用于自动分割蜂巢肺 CT 图像,提高了小样本数据集下蜂巢肺病变的分割性能。它将帮助医生进行早期筛查、准确诊断和定制化治疗。该方法在自动分割结果和专家手动分割结果之间保持了高度的相关性和一致性。准确的蜂巢肺病变区域自动分割在临床上非常重要。