Suppr超能文献

通过纳入辅助效应的贝叶斯线性混合模型实现稳定性研究的现代方法。

A Modern Approach to Stability Studies via Bayesian Linear Mixed Models Incorporating Auxiliary Effects.

机构信息

Chair of Statistics and Econometrics, University of Bamberg, Feldkirchenstraße 21, D-96052 Bamberg.

Boehringer Ingelheim Pharma GmbH & Co. KG, CMC Statistics BioPharma, Birkendorfer Straße 65, D-88397 Biberach an der Riß, Germany.

出版信息

J Pharm Sci. 2024 Jul;113(7):1779-1793. doi: 10.1016/j.xphs.2024.02.020. Epub 2024 Feb 28.

Abstract

In preparation to the launch of a pharmaceutical product, an estimate of its shelf life via stability testing is required by regulatory agencies. The ICH-Q1E guidance has been the worldwide reference to reach this objective, but in recent years several authors have criticized many of its aspects. To that end we discuss a complete Bayesian transcript of the ICH-Q1E, treating all the apparent shortcomings, while also addressing the presence of multiple batches using a linear mixed model (LMM) for proper shelf life prediction by explicitly modelling the batch-to-batch variability. This comprises a redefinition of the linear models proposed in the ICH-Q1E by suitable LMM counterparts, and a Bayesian analogue for model selection, which is more intuitive and remedies detrimental features of the ICH approach. In that context, a proper mathematical foundation of shelf life is provided that we use to investigate and mathematically compare the two available approaches to shelf life determination via shelf life distribution and batch distribution. The discussed method is then tested and evaluated using real data in comparison with the ICH-Q1E approach demonstrating their approximate equivalency for 6 batches. As a major objective, we extended the LMM with auxiliary fixed effects, here the concentration, which interconnect data sets allowing a prediction of shelf lives for concentrations lacking a sufficient number of batches. This establishes a novel approach to accelerate the speed to submission while retaining the patients' safety. Both case studies underline the inherent superiority of LMMs within a Bayesian framework regarding predictability and interpretability, and we hope that the relevant authorities will accept this approach in the future.

摘要

在推出药品之前,监管机构需要通过稳定性测试来估计其保质期。ICH-Q1E 指南已成为全球范围内实现这一目标的参考标准,但近年来,许多作者批评了其许多方面。为此,我们讨论了 ICH-Q1E 的完整贝叶斯转录本,讨论了所有明显的缺点,同时还使用线性混合模型 (LMM) 处理了多个批次的问题,通过显式建模批间变异性来正确预测保质期。这包括通过合适的 LMM 对应物重新定义 ICH-Q1E 中提出的线性模型,以及用于模型选择的贝叶斯模拟,该模拟更直观,并纠正了 ICH 方法的有害特征。在这种情况下,提供了保质期的适当数学基础,我们使用该基础来研究和数学比较通过保质期分布和批次分布确定保质期的两种可用方法。然后,使用真实数据讨论并评估了所讨论的方法,并与 ICH-Q1E 方法进行了比较,证明了它们对于 6 个批次的近似等效性。作为主要目标,我们使用辅助固定效应扩展了 LMM,这里是浓度,将数据集相互连接,允许对缺乏足够批次的浓度进行保质期预测。这为加速提交速度同时保留患者安全建立了一种新方法。这两个案例研究都强调了 LMM 在贝叶斯框架内的内在优势,在可预测性和可解释性方面,我们希望相关当局将来会接受这种方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验