Suppr超能文献

基于分娩工人足跟抬起时踝关节运动学的机器学习技术对慢性踝关节不稳进行分类

Classification of chronic ankle instability using machine learning technique based on ankle kinematics during heel rise in delivery workers.

作者信息

Hwang Ui-Jae, Kwon Oh-Yun, Kim Jun-Hee, Gwak Gyeong-Tae

机构信息

Department of Physical Therapy, College of Health Science, Laboratory of KEMA AI Research (KAIR), Yonsei University, Wonju, South Korea.

Department of Physical Therapy, College of Health Science, Laboratory of Kinetic Ergocise Based on Movement Analysis, Yonsei University, Wonju, South Korea.

出版信息

Digit Health. 2024 Feb 27;10:20552076241235116. doi: 10.1177/20552076241235116. eCollection 2024 Jan-Dec.

Abstract

OBJECTIVE

Ankle injuries in delivery workers (DWs) are often caused by trips, and high recurrence rates of ankle sprains are related to chronic ankle instability (CAI). Heel rise requires joint angles and moments similar to those of the terminal stance phase of walking that the foot supinates. Thus, our study aimed to develop, determine, and compare the predictive performance of statistical machine learning models to classify DWs with and without CAI using ankle kinematics during heel rise.

METHODS

In total, 203 DWs were screened for eligibility. Seven predictors were included in our study (age, work duration, body mass index, calcaneal stance position angle [CSPA] in the initial and terminal positions during heel rise, calcaneal movement during heel rise [CM], and plantar flexion angle during heel rise). Six machine learning algorithms, including logistic regression, decision tree, AdaBoost, Extreme Gradient boosting machines, random forest, and support vector machine, were trained.

RESULTS

The random forest model (area under the curve [AUC], 0.967 [excellent]; F1, 0.889; accuracy, 0.925) confirmed the best predictive performance in the test datasets among the six machine learning models. For Shapley Additive Explanations, old age, low CMHR, high CSPA in the initial position, high PFA, long work duration, low CSPA in the terminal position, and high body mass index were the most important predictors of CAI in the random forest model.

CONCLUSION

Ankle kinematics during heel rise can be considered in the classification of DWs with and without CAI.

摘要

目的

送货工人(DWs)的踝关节损伤通常由绊倒引起,而踝关节扭伤的高复发率与慢性踝关节不稳定(CAI)有关。足跟抬起时所需的关节角度和力矩与足部旋后的步行末期站立阶段相似。因此,我们的研究旨在开发、确定并比较统计机器学习模型的预测性能,以便利用足跟抬起过程中的踝关节运动学对有无CAI的DWs进行分类。

方法

总共筛选了203名DWs以确定其是否符合条件。我们的研究纳入了七个预测指标(年龄、工作时长、体重指数、足跟抬起初始和末期的跟骨站立位置角度[CSPA]、足跟抬起过程中的跟骨运动[CM]以及足跟抬起过程中的跖屈角度)。对六种机器学习算法进行了训练,包括逻辑回归、决策树、AdaBoost、极端梯度提升机、随机森林和支持向量机。

结果

随机森林模型(曲线下面积[AUC],0.967[优秀];F1,0.889;准确率,0.925)在六个机器学习模型中,在测试数据集中表现出最佳的预测性能。对于夏普利值解释,高龄、低CMHR、初始位置高CSPA、高PFA、工作时长较长、末期位置低CSPA以及高体重指数是随机森林模型中CAI的最重要预测指标。

结论

在对有无CAI的DWs进行分类时,可以考虑足跟抬起过程中的踝关节运动学。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7978/10901058/66c119c1d327/10.1177_20552076241235116-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验