Suppr超能文献

用于预测前交叉韧带重建术后恢复运动情况的机器学习模型:早期康复中的身体表现

Machine learning models for predicting return to sports after anterior cruciate ligament reconstruction: Physical performance in early rehabilitation.

作者信息

Hwang Ui-Jae, Kim Jin-Seong, Kim Keong-Yoon, Chung Kyu-Sung

机构信息

Department of Physical Therapy, College of Health Science, Laboratory of KEMA AI Research (KAIR), Yonsei University, Wonju, South Korea.

Department of Orthopedic Surgery, Hanyang University Guri Hospital, Guri-si, Republic of Korea.

出版信息

Digit Health. 2024 Nov 18;10:20552076241299065. doi: 10.1177/20552076241299065. eCollection 2024 Jan-Dec.

Abstract

OBJECTIVE

Return to sports (RTS) after anterior cruciate ligament reconstruction (ACLR) is a crucial surgical success measure. In this study, we aimed to identify the best-performing machine learning models for predicting RTS at 12 months post-ACLR, based on physical performance variables at 3 months post-ACLR.

METHODS

This case-control study included 102 patients who had undergone ACLR. The physical performance variables measured 3 months post-ACLR included the Biodex balance system, Y-balance test, and isokinetic muscle strength test. The RTS outcomes measured at 12 months post-ACLR included the single-leg hop test, single-leg vertical jump test, and Tegner activity score. Six machine learning algorithms were trained and validated using these data.

RESULTS

Random forest models in the test set best predicted the RTS success based on the single-leg hop test (area under the curve [AUC], 0.952) and Tegner activity score (AUC, 0.949). Gradient boosting models in the test set best predicted the RTS based on the single-leg vertical jump test (AUC, 0.868).

CONCLUSION

Modifiable factors should be considered in the early rehabilitation stage after ACLR to enhance the possibility of a successful RTS.

摘要

目的

前交叉韧带重建(ACLR)术后恢复运动(RTS)是衡量手术成功与否的关键指标。在本研究中,我们旨在基于ACLR术后3个月时的身体机能变量,确定预测ACLR术后12个月RTS的最佳机器学习模型。

方法

本病例对照研究纳入了102例行ACLR手术的患者。ACLR术后3个月测量的身体机能变量包括Biodex平衡系统、Y平衡测试和等速肌力测试。ACLR术后12个月测量的RTS结果包括单腿跳测试、单腿垂直跳测试和Tegner活动评分。使用这些数据对六种机器学习算法进行了训练和验证。

结果

测试集中的随机森林模型基于单腿跳测试(曲线下面积[AUC],0.952)和Tegner活动评分(AUC,0.949),对RTS成功的预测效果最佳。测试集中的梯度提升模型基于单腿垂直跳测试(AUC,0.868),对RTS的预测效果最佳。

结论

ACLR术后早期康复阶段应考虑可改变因素,以提高RTS成功的可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c872/11571261/09782d41f3d1/10.1177_20552076241299065-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验