Suppr超能文献

陶瓷基聚合物复合固体电解质中的隧道穿透型锂离子传导通道

Tunneling Interpenetrative Lithium Ion Conduction Channels in Polymer-in-Ceramic Composite Solid Electrolytes.

作者信息

Zhu Lei, Chen Junchao, Wang Youwei, Feng Wuliang, Zhu Yanzhe, Lambregts Sander F H, Wu Yongmin, Yang Cheng, van Eck Ernst R H, Peng Luming, Kentgens Arno P M, Tang Weiping, Xia Yongyao

机构信息

Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai 200433, China.

State Key Laboratory of Space Power-Sources Technology, Shanghai Institute of Space Power-Sources, Shanghai 200245, China.

出版信息

J Am Chem Soc. 2024 Mar 13;146(10):6591-6603. doi: 10.1021/jacs.3c11988. Epub 2024 Feb 29.

Abstract

Polymer-in-ceramic composite solid electrolytes (PIC-CSEs) provide important advantages over individual organic or inorganic solid electrolytes. In conventional PIC-CSEs, the ion conduction pathway is primarily confined to the ceramics, while the faster routes associated with the ceramic-polymer interface remain blocked. This challenge is associated with two key factors: (i) the difficulty in establishing extensive and uninterrupted ceramic-polymer interfaces due to ceramic aggregation; (ii) the ceramic-polymer interfaces are unresponsive to conducting ions because of their inherent incompatibility. Here, we propose a strategy by introducing polymer-compatible ionic liquids (PCILs) to mediate between ceramics and the polymer matrix. This mediation involves the polar groups of PCILs interacting with Li ions on the ceramic surfaces as well as the interactions between the polar components of PCILs and the polymer chains. This strategy addresses the ceramic aggregation issue, resulting in uniform PIC-CSEs. Simultaneously, it activates the ceramic-polymer interfaces by establishing interpenetrating channels that promote the efficient transport of Li ions across the ceramic phase, the ceramic-polymer interfaces, and the intervening pathways. Consequently, the obtained PIC-CSEs exhibit high ionic conductivity, exceptional flexibility, and robust mechanical strength. A PIC-CSE comprising poly(vinylidene fluoride) (PVDF) and 60 wt % PCIL-coated LiZrSiPO (LZSP) fillers showcasing an ionic conductivity of 0.83 mS cm, a superior Li ion transference number of 0.81, and an elongation of ∼300% at 25 °C could be produced on meter-scale. Its lithium metal pouch cells show high energy densities of 424.9 Wh kg (excluding packing films) and puncture safety. This work paves the way for designing PIC-CSEs with commercial viability.

摘要

陶瓷基聚合物复合固体电解质(PIC-CSEs)相较于单一的有机或无机固体电解质具有重要优势。在传统的PIC-CSEs中,离子传导路径主要局限于陶瓷,而与陶瓷-聚合物界面相关的更快传导路径仍然受阻。这一挑战与两个关键因素有关:(i)由于陶瓷团聚,难以建立广泛且不间断的陶瓷-聚合物界面;(ii)陶瓷-聚合物界面因其固有的不相容性而对传导离子无响应。在此,我们提出一种策略,通过引入聚合物兼容离子液体(PCILs)来介导陶瓷与聚合物基体之间的相互作用。这种介导涉及PCILs的极性基团与陶瓷表面的锂离子相互作用,以及PCILs的极性成分与聚合物链之间的相互作用。该策略解决了陶瓷团聚问题,从而得到均匀的PIC-CSEs。同时,它通过建立互穿通道来激活陶瓷-聚合物界面,这些通道促进锂离子在陶瓷相、陶瓷-聚合物界面及中间路径中的高效传输。因此,所制备的PIC-CSEs表现出高离子电导率、出色的柔韧性和强大的机械强度。在米级规模上可以制备出一种由聚偏氟乙烯(PVDF)和60 wt%的PCIL包覆的LiZrSiPO(LZSP)填料组成的PIC-CSE,其在25℃下的离子电导率为0.83 mS cm,锂离子迁移数高达0.81,伸长率约为300%。其锂金属软包电池具有424.9 Wh kg的高能量密度(不包括包装膜)和穿刺安全性。这项工作为设计具有商业可行性的PIC-CSEs铺平了道路。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验