Suppr超能文献

基于机器学习的金黄色葡萄球菌菌血症患者感染性心内膜炎预测风险评分——SABIER 评分。

A Machine Learning-Based Risk Score for Prediction of Infective Endocarditis Among Patients With Staphylococcus aureus Bacteremia-The SABIER Score.

机构信息

Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.

S.H. Ho Research Centre for Infectious Diseases, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.

出版信息

J Infect Dis. 2024 Sep 23;230(3):606-613. doi: 10.1093/infdis/jiae080.

Abstract

BACKGROUND

Early risk assessment is needed to stratify Staphylococcus aureus infective endocarditis (SA-IE) risk among patients with S. aureus bacteremia (SAB) to guide clinical management. The objective of the current study was to develop a novel risk score that is independent of subjective clinical judgment and can be used early, at the time of blood culture positivity.

METHODS

We conducted a retrospective big data analysis from territory-wide electronic data and included hospitalized patients with SAB between 2009 and 2019. We applied a random forest risk scoring model to select variables from an array of parameters, according to the statistical importance in predicting SA-IE outcome. The data were divided into derivation and validation cohorts. The areas under the curve of the receiver operating characteristic (AUCROCs) were determined.

RESULTS

We identified 15 741 SAB patients, among them 658 (4.18%) had SA-IE. The AUCROC was 0.74 (95%CI 0.70-0.76), with a negative predictive value of 0.980 (95%CI 0.977-0.983). The four most discriminatory features were age, history of infective endocarditis, valvular heart disease, and community onset.

CONCLUSIONS

We developed a novel risk score with performance comparable with existing scores, which can be used at the time of SAB and prior to subjective clinical judgment.

摘要

背景

需要早期风险评估来对金黄色葡萄球菌菌血症(SAB)患者的金黄色葡萄球菌感染性心内膜炎(SA-IE)风险进行分层,以指导临床管理。本研究的目的是开发一种新的风险评分,该评分不依赖于主观临床判断,并且可以在血培养阳性时早期使用。

方法

我们对全港范围内的电子数据进行了回顾性大数据分析,纳入了 2009 年至 2019 年住院的 SAB 患者。我们根据预测 SA-IE 结果的统计学重要性,应用随机森林风险评分模型从一系列参数中选择变量。将数据分为推导和验证队列。确定接收者操作特征曲线下的面积(AUCROCs)。

结果

我们共确定了 15741 例 SAB 患者,其中 658 例(4.18%)患有 SA-IE。AUCROC 为 0.74(95%CI 0.70-0.76),阴性预测值为 0.980(95%CI 0.977-0.983)。四个最具区分力的特征是年龄、感染性心内膜炎史、心脏瓣膜病和社区发病。

结论

我们开发了一种新的风险评分,其性能与现有评分相当,可在 SAB 发生时以及在主观临床判断之前使用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验