Division of Developmental-Behavioral Pediatrics, Children's Hospital Los Angeles, Los Angeles, California, United States of America.
Wuqu' Kawoq | Maya Health Alliance, Tecpán, Guatemala.
PLoS One. 2024 Feb 29;19(2):e0298652. doi: 10.1371/journal.pone.0298652. eCollection 2024.
Tools to accurately assess infants' neurodevelopmental status very early in their lives are limited. Wearable sensors may provide a novel approach for very early assessment of infant neurodevelopmental status. This may be especially relevant in rural and low-resource global settings.
We conducted a longitudinal observational study and used wearable sensors to repeatedly measure the kinematic leg movement characteristics of 41 infants in rural Guatemala three times across full days between birth and 6 months of age. In addition, we collected sociodemographic data, growth data, and caregiver estimates of swaddling behaviors. We used visual analysis and multivariable linear mixed models to evaluate the associations between two leg movement kinematic variables (awake movement rate, peak acceleration per movement) and infant age, swaddling behaviors, growth, and other covariates.
Multivariable mixed models of sensor data showed age-dependent increases in leg movement rates (2.16 [95% CI 0.80,3.52] movements/awake hour/day of life) and movement acceleration (5.04e-3 m/s2 [95% CI 3.79e-3, 6.27e-3]/day of life). Swaddling time as well as growth status, poverty status and multiple other clinical and sociodemographic variables had no impact on either movement variable.
Collecting wearable sensor data on young infants in a rural low-resource setting is feasible and can be used to monitor age-dependent changes in movement kinematics. Future work will evaluate associations between these kinematic variables from sensors and formal developmental measures, such as the Bayley Scales of Infant and Toddler Development.
目前,用于准确评估婴儿生命早期神经发育状况的工具十分有限。可穿戴传感器或许可以为婴儿神经发育状况的早期评估提供一种新方法。这在农村和资源匮乏的全球环境中可能尤其重要。
我们进行了一项纵向观察性研究,使用可穿戴传感器在婴儿出生后至 6 个月期间的三个完整日内,每天三次重复测量 41 名危地马拉农村婴儿的腿部运动特征。此外,我们还收集了社会人口统计学数据、生长数据以及照料者对襁褓行为的估计。我们使用视觉分析和多变量线性混合模型来评估两个腿部运动运动学变量(清醒时运动率、每次运动的峰值加速度)与婴儿年龄、襁褓行为、生长以及其他协变量之间的关联。
传感器数据的多变量混合模型显示,腿部运动率(2.16 [95%CI 0.80,3.52] 每清醒小时/生命日的运动次数)和运动加速度(5.04e-3 m/s2 [95%CI 3.79e-3,6.27e-3]/生命日)随年龄增长而增加。襁褓时间以及生长状况、贫困状况和其他多个临床和社会人口统计学变量对这两个运动变量均无影响。
在农村资源匮乏环境中收集婴儿可穿戴传感器数据是可行的,可以用于监测运动运动学随年龄的变化。未来的工作将评估这些来自传感器的运动学变量与正式发育测量(如贝利婴幼儿发育量表)之间的关联。