Suppr超能文献

对9个月大的早产和足月出生婴儿在不断变化的情感和互动情境中的运动和行为动态进行的多层次分析。

A multi-level analysis of motor and behavioural dynamics in 9-month-old preterm and term-born infants during changing emotional and interactive contexts.

作者信息

Chua Yu Wei, Jiménez-Sánchez Lorena, Ledsham Victoria, O'Carroll Sinéad, Cox Ralf F A, Andonovic Ivan, Tachtatzis Christos, Boardman James P, Fletcher-Watson Sue, Rowe Philip, Delafield-Butt Jonathan

机构信息

Strathclyde Institute of Education, University of Strathclyde, Lord Hope Building, Glasgow, G4 0LT, UK.

Laboratory for Innovation in Autism, University of Strathclyde, Graham Hills Building, Glasgow, G1 1QE, UK.

出版信息

Sci Rep. 2025 Jan 6;15(1):952. doi: 10.1038/s41598-024-83194-w.

Abstract

Computational analysis of infant movement has significant potential to reveal markers of developmental health. We report two studies employing dynamic analyses of motor kinematics and motor behaviours, which characterise movement at two levels, in 9-month-old infants. We investigate the effect of preterm birth (< 33 weeks of gestation) and the effect of changing emotional and social-interactive contexts in the still-face paradigm. First, multiscale permutation entropy was employed to analyse acceleration kinematic timeseries data collected from Inertial Measurement Unit (IMU) sensors on infants' torso, wrists, and ankles (N = 32: 10 term; 22 preterm). Second, Recurrence Quantification Analysis was used to characterise patterns of second-to-second behavioural changes, from observationally coded behavioural timeseries on infants' emotional self-regulation (N = 111: 61 term; 50 preterm). We found frequency-specific effects of context on permutation entropy. Relative to infants born at term (> 37 weeks of gestation), infants born preterm showed greater permutation entropy in their left ankle and torso movements, but not in right ankle or wrist movements. We did not find effects of preterm birth or emotional context on micro-level behavioural dynamics. Our methodology and findings inform future work using multiscale entropy to study infant development. Dynamic analysis of behaviour is a relatively young field, and applications to emotional self-regulation requires further methodological development.

摘要

对婴儿运动进行计算分析具有揭示发育健康标志物的巨大潜力。我们报告了两项研究,它们采用了对运动学和运动行为的动态分析,在9个月大的婴儿中从两个层面表征运动。我们研究了早产(妊娠<33周)的影响以及在静脸范式中改变情感和社会互动背景的影响。首先,采用多尺度排列熵来分析从婴儿躯干、手腕和脚踝上的惯性测量单元(IMU)传感器收集的加速度运动学时间序列数据(N = 32:10名足月儿;22名早产儿)。其次,使用递归定量分析来表征基于对婴儿情绪自我调节的观察编码行为时间序列的逐秒行为变化模式(N = 111:61名足月儿;50名早产儿)。我们发现背景对排列熵有频率特异性影响。相对于足月出生(妊娠>37周)的婴儿,早产婴儿在其左脚踝和躯干运动中表现出更大的排列熵,但在右脚踝或手腕运动中则没有。我们没有发现早产或情感背景对微观层面行为动态的影响。我们的方法和发现为未来使用多尺度熵研究婴儿发育的工作提供了信息。行为的动态分析是一个相对较新的领域,应用于情绪自我调节需要进一步的方法学发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a32/11704203/8ba2d8c08d23/41598_2024_83194_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验