Suppr超能文献

利用机器学习从惯性传感器识别婴儿身体姿势:哪些参数至关重要?

Identifying Infant Body Position from Inertial Sensors with Machine Learning: Which Parameters Matter?

作者信息

Duda-Goławska Joanna, Rogowski Aleksander, Laudańska Zuzanna, Żygierewicz Jarosław, Tomalski Przemysław

机构信息

Neurocognitive Development Lab, Institute of Psychology, Polish Academy of Sciences, ul. Jaracza 1, 00-378 Warsaw, Poland.

Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warsaw, Poland.

出版信息

Sensors (Basel). 2024 Dec 6;24(23):7809. doi: 10.3390/s24237809.

Abstract

The efficient classification of body position is crucial for monitoring infants' motor development. It may fast-track the early detection of developmental issues related not only to the acquisition of motor milestones but also to postural stability and movement patterns. In turn, this may facilitate and enhance opportunities for early intervention that are crucial for promoting healthy growth and development. The manual classification of human body position based on video recordings is labour-intensive, leading to the adoption of Inertial Motion Unit (IMU) sensors. IMUs measure acceleration, angular velocity, and magnetic field intensity, enabling the automated classification of body position. Many research teams are currently employing supervised machine learning classifiers that utilise hand-crafted features for data segment classification. In this study, we used a longitudinal dataset of IMU recordings made in the lab in three different play activities of infants aged 4-12 months. The classification was conducted based on manually annotated video recordings. We found superior performance of the CatBoost Classifier over the Random Forest Classifier in the task of classifying five positions based on IMU sensor data from infants, yielding excellent classification accuracy of the Supine (97.7%), Sitting (93.5%), and Prone (89.9%) positions. Moreover, using data ablation experiments and analysing the SHAP (SHapley Additive exPlanations) values, the study assessed the importance of various groups of features from both the time and frequency domains. The results highlight that both accelerometer and magnetometer data, especially their statistical characteristics, are critical contributors to improving the accuracy of body position classification.

摘要

身体姿势的有效分类对于监测婴儿的运动发育至关重要。它可以快速追踪与运动里程碑的获得、姿势稳定性和运动模式相关的发育问题的早期检测。反过来,这可能会促进和增加早期干预的机会,而早期干预对于促进健康成长和发育至关重要。基于视频记录手动分类人体姿势是一项劳动密集型工作,因此人们采用了惯性运动单元(IMU)传感器。IMU可测量加速度、角速度和磁场强度,从而实现身体姿势的自动分类。目前,许多研究团队都在使用监督式机器学习分类器,这些分类器利用手工制作的特征进行数据段分类。在本研究中,我们使用了一个纵向数据集,该数据集是在实验室中对4至12个月大的婴儿进行的三种不同游戏活动中记录的IMU数据。分类是基于手动注释的视频记录进行的。我们发现,在根据婴儿的IMU传感器数据对五个姿势进行分类的任务中,CatBoost分类器的性能优于随机森林分类器,仰卧位(97.7%)、坐位(93.5%)和俯卧位(89.9%)的分类准确率很高。此外,通过数据消融实验和分析SHAP(Shapley加性解释)值,该研究评估了时域和频域中不同特征组的重要性。结果表明,加速度计和磁力计数据,尤其是它们的统计特征,是提高身体姿势分类准确性的关键因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a15/11644974/9a0f7f29e225/sensors-24-07809-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验