Yang Ye, Sabaghi Davood, Liu Chang, Dianat Arezoo, Mücke David, Qi Haoyuan, Liu Yannan, Hambsch Mike, Xu Zhi-Kang, Yu Minghao, Cuniberti Gianaurelio, Mannsfeld Stefan C B, Kaiser Ute, Dong Renhao, Wang Zhiyong, Feng Xinliang
Center for Advancing Electronics Dresden &, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01069, Dresden, Germany.
MOE Engineering Research Center of Membrane and Water Treatment, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, 310058, Hangzhou, China.
Angew Chem Int Ed Engl. 2024 Jun 10;63(24):e202316299. doi: 10.1002/anie.202316299. Epub 2024 May 6.
Vinylene-linked two-dimensional polymers (V-2DPs) and their layer-stacked covalent organic frameworks (V-2D COFs) featuring high in-plane π-conjugation and robust frameworks have emerged as promising candidates for energy-related applications. However, current synthetic approaches are restricted to producing V-2D COF powders that lack processability, impeding their integration into devices, particularly within membrane technologies reliant upon thin films. Herein, we report the novel on-water surface synthesis of vinylene-linked cationic 2DPs films (V-C2DP-1 and V-C2DP-2) via Knoevenagel polycondensation, which serve as the anion-selective electrode coating for highly-reversible and durable zinc-based dual-ion batteries (ZDIBs). Model reactions and theoretical modeling revealed the enhanced reactivity and reversibility of the Knoevenagel reaction on the water surface. On this basis, we demonstrated the on-water surface 2D polycondensation towards V-C2DPs films that show large lateral size, tunable thickness, and high chemical stability. Representatively, V-C2DP-1 presents as a fully crystalline and face-on oriented film with in-plane lattice parameters of a=b≈43.3 Å. Profiting from its well-defined cationic sites, oriented 1D channels, and stable frameworks, V-C2DP-1 film possesses superior bis(trifluoromethanesulfonyl)imide anion (TFSI)-transport selectivity (transference, t_=0.85) for graphite cathode in high-voltage ZDIBs, thus triggering additional TFSI-intercalation stage and promoting its specific capacity (from ~83 to 124 mAh g) and cycling life (>1000 cycles, 95 % capacity retention).
具有高面内π共轭和坚固框架的亚乙烯基连接的二维聚合物(V-2DPs)及其层状堆积的共价有机框架(V-2D COFs)已成为能源相关应用的有前途的候选材料。然而,目前的合成方法仅限于生产缺乏可加工性的V-2D COF粉末,这阻碍了它们集成到器件中,特别是在依赖薄膜的膜技术中。在此,我们报道了通过克诺文纳格尔缩聚反应在水表面上合成新型亚乙烯基连接的阳离子2DPs薄膜(V-C2DP-1和V-C2DP-2),其用作高可逆性和耐用性锌基双离子电池(ZDIBs)的阴离子选择性电极涂层。模型反应和理论建模揭示了克诺文纳格尔反应在水表面上的反应活性和可逆性增强。在此基础上,我们展示了在水表面上向V-C2DPs薄膜进行二维缩聚反应,该薄膜具有大的横向尺寸、可调的厚度和高化学稳定性。代表性地,V-C2DP-1呈现为完全结晶且面取向的薄膜,其面内晶格参数为a = b≈43.3 Å。得益于其明确的阳离子位点、取向的一维通道和稳定的框架,V-C2DP-1薄膜在高压ZDIBs中对石墨阴极具有优异的双(三氟甲磺酰)亚胺阴离子(TFSI)传输选择性(迁移数,t_ = 0.85),从而引发额外的TFSI嵌入阶段并提高其比容量(从~83提高到124 mAh g)和循环寿命(>1000次循环,容量保持率95%)。