Suppr超能文献

用于稳定阴离子插层电池化学的超薄正电极皮肤。

Ultrathin positively charged electrode skin for durable anion-intercalation battery chemistries.

机构信息

Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstraße 4, 01062, Dresden, Germany.

Max Planck Institute of Microstructure Physics, D-06120, Halle (Saale), Germany.

出版信息

Nat Commun. 2023 Feb 10;14(1):760. doi: 10.1038/s41467-023-36384-5.

Abstract

The anion-intercalation chemistries of graphite have the potential to construct batteries with promising energy and power breakthroughs. Here, we report the use of an ultrathin, positively charged two-dimensional poly(pyridinium salt) membrane (C2DP) as the graphite electrode skin to overcome the critical durability problem. Large-area C2DP enables the conformal coating on the graphite electrode, remarkably alleviating the electrolyte. Meanwhile, the dense face-on oriented single crystals with ultrathin thickness and cationic backbones allow C2DP with high anion-transport capability and selectivity. Such desirable anion-transport properties of C2DP prevent the cation/solvent co-intercalation into the graphite electrode and suppress the consequent structure collapse. An impressive PF-intercalation durability is demonstrated for the C2DP-covered graphite electrode, with capacity retention of 92.8% after 1000 cycles at 1 C and Coulombic efficiencies of > 99%. The feasibility of constructing artificial ion-regulating electrode skins with precisely customized two-dimensional polymers offers viable means to promote problematic battery chemistries.

摘要

石墨的阴离子插层化学具有构建具有有前途的能量和功率突破的电池的潜力。在这里,我们报告了使用超薄的、带正电荷的二维聚(吡啶盐)膜(C2DP)作为石墨电极皮来克服关键的耐久性问题。大面积的 C2DP 可实现对石墨电极的共形涂层,显著缓解了电解质的问题。同时,密集的面外取向的单晶具有超薄厚度和阳离子骨架,使 C2DP 具有高阴离子传输能力和选择性。C2DP 的这种理想的阴离子传输特性可防止阳离子/溶剂共插层进入石墨电极,并抑制随之而来的结构坍塌。实验证明,C2DP 覆盖的石墨电极具有令人印象深刻的 PF 插层耐久性,在 1C 下循环 1000 次后容量保持率为 92.8%,库仑效率>99%。用精确定制的二维聚合物构建人工离子调节电极皮的可行性为促进有问题的电池化学提供了可行的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c1fe/9918723/f75608bd1fa2/41467_2023_36384_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验