Zhao Jin-Shuang, Mu Yan-Fei, Wu Li-Yuan, Luo Zhi-Mei, Velasco Lucia, Sauvan Maxime, Moonshiram Dooshaye, Wang Jia-Wei, Zhang Min, Lu Tong-Bu
MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, 300384, Tianjin, China.
School of Chemical Engineering and Technology, Sun Yat-sen University, 519082, Zhuhai, China.
Angew Chem Int Ed Engl. 2024 May 21;63(21):e202401344. doi: 10.1002/anie.202401344. Epub 2024 Apr 11.
The development of high-performance photocatalytic systems for CO reduction is appealing to address energy and environmental issues, while it is challenging to avoid using toxic metals and organic sacrificial reagents. We here immobilize a family of cobalt phthalocyanine catalysts on Pb-free halide perovskite CsAgBiBr nanosheets with delicate control on the anchors of the cobalt catalysts. Among them, the molecular hybrid photocatalyst assembled by carboxyl anchors achieves the optimal performance with an electron consumption rate of 300±13 μmol g h for visible-light-driven CO-to-CO conversion coupled with water oxidation to O, over 8 times of the unmodified CsAgBiBr (36±8 μmol g h), also far surpassing the documented systems (<150 μmol g h). Besides the improved intrinsic activity, electrochemical, computational, ex-/in situ X-ray photoelectron and X-ray absorption spectroscopic results indicate that the electrons photogenerated at the Bi atoms of CsAgBiBr can be directionally transferred to the cobalt catalyst via the carboxyl anchors which strongly bind to the Bi atoms, substantially facilitating the interfacial electron transfer kinetics and thereby the photocatalysis.
开发用于 CO 还原的高性能光催化系统对于解决能源和环境问题具有吸引力,然而避免使用有毒金属和有机牺牲试剂却具有挑战性。我们在此将一族钴酞菁催化剂固定在无铅卤化物钙钛矿 CsAgBiBr 纳米片上,对钴催化剂的锚定进行精细控制。其中,由羧基锚定组装的分子杂化光催化剂实现了最佳性能,对于可见光驱动的 CO 到 CO 转化以及水氧化为 O₂,其电子消耗速率为 300±13 μmol g⁻¹ h⁻¹,是未改性的 CsAgBiBr(36±8 μmol g⁻¹ h⁻¹)的 8 倍多,也远远超过已报道的系统(<150 μmol g⁻¹ h⁻¹)。除了提高的本征活性外,电化学、计算、原位/非原位 X 射线光电子能谱和 X 射线吸收光谱结果表明,CsAgBiBr 的 Bi 原子处光生的电子可以通过与 Bi 原子强烈结合的羧基锚定向钴催化剂定向转移,极大地促进了界面电子转移动力学,从而促进了光催化作用。