Suppr超能文献

分子催化剂与有机半导体配位键合,用于水中选择性光驱动的CO还原反应。

Molecular catalyst coordinatively bonded to organic semiconductors for selective light-driven CO reduction in water.

作者信息

Wang Jia-Wei, Zhao Fengyi, Velasco Lucia, Sauvan Maxime, Moonshiram Dooshaye, Salati Martina, Luo Zhi-Mei, He Sheng, Jin Tao, Mu Yan-Fei, Ertem Mehmed Z, Lian Tianquan, Llobet Antoni

机构信息

School of Chemical Engineering and Technology, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, China.

Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Tarragona, 43007, Spain.

出版信息

Nat Commun. 2024 Nov 12;15(1):9779. doi: 10.1038/s41467-024-54026-2.

Abstract

The selective photoreduction of CO in aqueous media based on earth-abundant elements only, is today a challenging topic. Here we present the anchoring of discrete molecular catalysts on organic polymeric semiconductors via covalent bonding, generating molecular hybrid materials with well-defined active sites for CO photoreduction, exclusively to CO in purely aqueous media. The molecular catalysts are based on aryl substituted Co phthalocyanines that can be coordinated by dangling pyridyl attached to a polymeric covalent triazine framework that acts as a light absorber. This generates a molecular hybrid material that efficiently and selectively achieves the photoreduction of CO to CO in KHCO aqueous buffer, giving high yields in the range of 22 mmol g (458 μmol g h) and turnover numbers above 550 in 48 h, with no deactivation and no detectable H. The electron transfer mechanism for the activation of the catalyst is proposed based on the combined results from time-resolved fluorescence spectroscopy, in situ spectroscopies and quantum chemical calculations.

摘要

仅基于地球上储量丰富的元素在水性介质中对一氧化碳进行选择性光还原,如今仍是一个具有挑战性的课题。在此,我们展示了通过共价键将离散的分子催化剂锚定在有机聚合物半导体上,生成具有明确活性位点的分子杂化材料,用于在纯水性介质中将一氧化碳光还原为一氧化碳。这些分子催化剂基于芳基取代的钴酞菁,它们可以与连接到作为光吸收体的聚合物共价三嗪框架上的悬空吡啶基配位。这产生了一种分子杂化材料,该材料在KHCO水性缓冲液中能高效且选择性地将一氧化碳光还原为一氧化碳,在48小时内产率高达22 mmol g(458 μmol g h),周转数超过550,且无失活现象且未检测到氢气。基于时间分辨荧光光谱、原位光谱和量子化学计算的综合结果,提出了催化剂活化的电子转移机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验