缆细菌中长程传导的类有机金属性质。
The organo-metal-like nature of long-range conduction in cable bacteria.
机构信息
Geobiology Group, Microbial Systems Technology Excellence Centre, Department of Biology, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium; A-Sense Lab, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerpen, Belgium.
Geobiology Group, Microbial Systems Technology Excellence Centre, Department of Biology, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium.
出版信息
Bioelectrochemistry. 2024 Jun;157:108675. doi: 10.1016/j.bioelechem.2024.108675. Epub 2024 Feb 25.
Cable bacteria are filamentous, multicellular microorganisms that display an exceptional form of biological electron transport across centimeter-scale distances. Currents are guided through a network of nickel-containing protein fibers within the cell envelope. Still, the mechanism of long-range conduction remains unresolved. Here, we characterize the conductance of the fiber network under dry and wet, physiologically relevant, conditions. Our data reveal that the fiber conductivity is high (median value: 27 S cm; range: 2 to 564 S cm), does not show any redox signature, has a low thermal activation energy (E = 69 ± 23 meV), and is not affected by humidity or the presence of ions. These features set the nickel-based conduction mechanism in cable bacteria apart from other known forms of biological electron transport. As such, conduction resembles that of an organic semi-metal with a high charge carrier density. Our observation that biochemistry can synthesize an organo-metal-like structure opens the way for novel bio-based electronic technologies.
电缆菌是丝状的多细胞微生物,能够在厘米级的距离上表现出特殊形式的生物电子传递。电流通过细胞包膜内的含镍蛋白纤维网络进行引导。然而,长距离传导的机制仍未得到解决。在这里,我们在干燥和潮湿(生理相关)条件下对纤维网络的传导性进行了表征。我们的数据表明,纤维的电导率很高(中位数:27 S cm;范围:2 至 564 S cm),没有表现出任何氧化还原特征,热激活能较低(E = 69 ± 23 meV),并且不受湿度或离子的影响。这些特性使得基于镍的传导机制与其他已知形式的生物电子传递方式区分开来。因此,这种传导类似于具有高电荷载流子密度的有机半金属。我们的观察结果表明,生物化学可以合成类似有机-金属的结构,为新型基于生物的电子技术开辟了道路。