Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720.
Department of Chemistry - Ångström Laboratory, Uppsala University, Uppsala 75120, Sweden.
Proc Natl Acad Sci U S A. 2023 Oct 24;120(43):e2308600120. doi: 10.1073/pnas.2308600120. Epub 2023 Oct 20.
Carboxysomes are proteinaceous organelles that encapsulate key enzymes of CO fixation-Rubisco and carbonic anhydrase-and are the centerpiece of the bacterial CO concentrating mechanism (CCM). In the CCM, actively accumulated cytosolic bicarbonate diffuses into the carboxysome and is converted to CO by carbonic anhydrase, producing a high CO concentration near Rubisco and ensuring efficient carboxylation. Self-assembly of the α-carboxysome is orchestrated by the intrinsically disordered scaffolding protein, CsoS2, which interacts with both Rubisco and carboxysomal shell proteins, but it is unknown how the carbonic anhydrase, CsoSCA, is incorporated into the α-carboxysome. Here, we present the structural basis of carbonic anhydrase encapsulation into α-carboxysomes from . We find that CsoSCA interacts directly with Rubisco via an intrinsically disordered N-terminal domain. A 1.98 Å single-particle cryoelectron microscopy structure of Rubisco in complex with this peptide reveals that CsoSCA binding is predominantly mediated by a network of hydrogen bonds. CsoSCA's binding site overlaps with that of CsoS2, but the two proteins utilize substantially different motifs and modes of binding, revealing a plasticity of the Rubisco binding site. Our results advance the understanding of carboxysome biogenesis and highlight the importance of Rubisco, not only as an enzyme but also as a central hub for mediating assembly through protein interactions.
羧基体是一种蛋白细胞器,它包裹着 CO 固定的关键酶——Rubisco 和碳酸酐酶,是细菌 CO 浓缩机制(CCM)的核心。在 CCM 中,活跃积累的细胞质碳酸氢盐扩散到羧基体中,碳酸酐酶将其转化为 CO,在 Rubisco 附近产生高浓度的 CO,确保有效的羧化作用。α-羧基体的自组装由固有无序的支架蛋白 CsoS2 协调,CsoS2 与 Rubisco 和羧基体壳蛋白相互作用,但碳酸酐酶 CsoSCA 如何掺入α-羧基体尚不清楚。在这里,我们展示了来自. 的碳酸酐酶封装到α-羧基体中的结构基础。我们发现 CsoSCA 通过一个固有无序的 N 端结构域直接与 Rubisco 相互作用。Rubisco 与该肽结合的 1.98 Å 单颗粒冷冻电镜结构揭示了 CsoSCA 结合主要是通过氢键网络介导的。CsoSCA 的结合位点与 CsoS2 的结合位点重叠,但这两种蛋白质利用了截然不同的基序和结合模式,揭示了 Rubisco 结合位点的可塑性。我们的研究结果推进了对羧基体生物发生的理解,并强调了 Rubisco 的重要性,不仅作为一种酶,而且作为通过蛋白质相互作用介导组装的中心枢纽。