Suppr超能文献

从晶体结构排列推断细菌微隔间壳六聚体的组装弯曲趋势。

Inferring assembly-curving trends of bacterial micro-compartment shell hexamers from crystal structure arrangements.

机构信息

TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France.

Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America.

出版信息

PLoS Comput Biol. 2023 Apr 5;19(4):e1011038. doi: 10.1371/journal.pcbi.1011038. eCollection 2023 Apr.

Abstract

Bacterial microcompartments (BMC) are complex macromolecular assemblies that participate in varied chemical processes in about one fourth of bacterial species. BMC-encapsulated enzymatic activities are segregated from other cell contents by means of semipermeable shells, justifying why BMC are viewed as prototype nano-reactors for biotechnological applications. Herein, we undertook a comparative study of bending propensities of BMC hexamers (BMC-H), the most abundant shell constituents. Published data show that some BMC-H, like β-carboxysomal CcmK, tend to assemble flat whereas other BMC-H often build curved objects. Inspection of available crystal structures presenting BMC-H in tiled arrangements permitted us to identify two major assembly modes with a striking connection with experimental trends. All-atom molecular dynamics (MD) supported that BMC-H bending is triggered robustly only from the arrangement adopted in crystals by BMC-H that experimentally form curved objects, leading to very similar arrangements to those found in structures of recomposed BMC shells. Simulations on triplets of planar-behaving hexamers, which were previously reconfigured to comply with such organization, confirmed that bending propensity is mostly defined by the precise lateral positioning of hexamers, rather than by BMC-H identity. Finally, an interfacial lysine was pinpointed as the most decisive residue in controlling PduA spontaneous curvature. Globally, results presented herein should contribute to improve our understanding of the variable mechanisms of biogenesis characterized for BMC, and of possible strategies to regulate BMC size and shape.

摘要

细菌微隔间 (BMC) 是复杂的高分子组装体,参与约四分之一的细菌物种中的多种化学过程。BMC 包裹的酶活性通过半透性外壳与其他细胞内容物分离,这就是为什么 BMC 被视为生物技术应用的原型纳米反应器。在这里,我们对 BMC 六聚体 (BMC-H) 的弯曲倾向进行了比较研究,BMC-H 是最丰富的外壳成分。已发表的数据表明,一些 BMC-H,如β-羧化体 CcmK,往往组装成平面,而其他 BMC-H 则经常构建弯曲的物体。对呈现 BMC-H 平铺排列的现有晶体结构的检查使我们能够识别出两种主要的组装模式,这些模式与实验趋势有明显的联系。全原子分子动力学 (MD) 支持,只有从实验上形成弯曲物体的 BMC-H 在晶体中采用的排列,才能强烈触发 BMC-H 的弯曲,从而导致与重新构建的 BMC 壳结构中发现的排列非常相似。对以前重新配置以符合这种组织的平面行为六聚体的三聚体的模拟证实,弯曲倾向主要由六聚体的精确侧向定位定义,而不是由 BMC-H 身份定义。最后,确定了一个界面赖氨酸作为控制 PduA 自发曲率的最关键残基。总的来说,本文的结果应该有助于提高我们对 BMC 所具有的可变生物发生机制的理解,以及对调节 BMC 大小和形状的可能策略的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8934/10109471/15a638e51edf/pcbi.1011038.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验