Zhou Qian, Hao Yuxia, Jie Jialong, Wang Shuo, Xia Ye, Yang Chunfan, Liu Lihong, Fang Wei-Hai, Su Hongmei
College of Chemistry, Beijing Normal University, Beijing 100875, China.
JACS Au. 2024 Jan 23;4(2):441-453. doi: 10.1021/jacsau.3c00575. eCollection 2024 Feb 26.
A small chemical modification of the nucleobase structure can significantly enhance the photoactivity of DNA, which may incur DNA damage, thus holding promising applications in photochemotherapy treatment of cancers or pathogens. However, single substitution confers only limited phototoxicity to DNA. Herein, we combine femtosecond and nanosecond time-resolved spectroscopy with high-level calculations to disentangle the excited-state dynamics of 6-methylthioguanine (me6-TG) under variable wavelength UVA excitation (310-330 nm). We find that double substitution of nucleobases (thionation and methylation) boosts the photoactivity by introducing more reactive channels. Intriguingly, nπ*, rather than nπ*, acts as the doorway state engendering the formation of the long-lived reactive triplet state in me6-TG. The nπ* induces a low spin-orbit coupling of 8.3 cm, which increases the intersystem crossing (ISC) time (2.91 ± 0.14 ns). Despite the slowed ISC, the triplet quantum yield (Φ) still accounts for a large fraction (0.6 ± 0.1), consistent with the potential energy surface that favors excited-state bifurcation to nπ* (3.36 ± 0.15 ps) rather than ππ* (5.05 ± 0.26 ps), such that the subsequent ISC to triplet via nπ* constitutes the main relaxation pathway in me6-TG. Although this Φ is inferior to its single-substituted predecessor 6-thioguanine (6-TG, 0.8 ± 0.2), the effect of thionation in synergy with methylation opens a unique C-S bond cleavage pathway through crossing to a repulsive πσ* state, generating thiyl radicals as highly reactive intermediates that may invoke biological damage. This photodissociation channel is extremely difficult for conventional nucleobases. These findings demonstrate the synergistic effects of double functionality substitution in modulating excited-state dynamics and enhancing the photolabile character of DNA nucleobases, providing inspirations for the rational design of advanced photodynamic and photochemotherapy approaches.
对核碱基结构进行微小的化学修饰可显著增强DNA的光活性,这可能导致DNA损伤,因此在癌症或病原体的光化学疗法治疗中具有广阔的应用前景。然而,单取代赋予DNA的光毒性有限。在此,我们将飞秒和纳秒时间分辨光谱与高水平计算相结合,以解析6-甲基硫代鸟嘌呤(me6-TG)在可变波长UVA激发(310 - 330 nm)下的激发态动力学。我们发现核碱基的双取代(硫代和甲基化)通过引入更多反应通道来提高光活性。有趣的是,在me6-TG中,nπ而非nπ作为产生长寿命反应性三重态的门态。nπ诱导了8.3 cm的低自旋 - 轨道耦合,这增加了系间窜越(ISC)时间(2.91±0.14 ns)。尽管ISC减慢,但三重态量子产率(Φ)仍占很大比例(0.6±0.1),这与有利于激发态分叉到nπ(3.36±0.15 ps)而非ππ*(5.05±0.26 ps)的势能面一致,使得随后通过nπ到三重态的ISC构成了me6-TG中的主要弛豫途径。尽管这个Φ低于其单取代前体6-硫代鸟嘌呤(6-TG,0.8±0.2),但硫代与甲基化协同作用的效果通过交叉到排斥性的πσ态开辟了一条独特的C - S键断裂途径,产生硫自由基作为可能引发生物损伤的高活性中间体。这种光解离通道对于传统核碱基来说极其困难。这些发现证明了双功能取代在调节激发态动力学和增强DNA核碱基的光不稳定特性方面的协同作用,为先进的光动力和光化学疗法方法的合理设计提供了灵感。