Suppr超能文献

基于上下文感知的生成模型学习。

Context-Aware Learning for Generative Models.

出版信息

IEEE Trans Neural Netw Learn Syst. 2021 Aug;32(8):3471-3483. doi: 10.1109/TNNLS.2020.3011671. Epub 2021 Aug 3.

Abstract

This work studies the class of algorithms for learning with side-information that emerges by extending generative models with embedded context-related variables. Using finite mixture models (FMMs) as the prototypical Bayesian network, we show that maximum-likelihood estimation (MLE) of parameters through expectation-maximization (EM) improves over the regular unsupervised case and can approach the performances of supervised learning, despite the absence of any explicit ground-truth data labeling. By direct application of the missing information principle (MIP), the algorithms' performances are proven to range between the conventional supervised and unsupervised MLE extremities proportionally to the information content of the contextual assistance provided. The acquired benefits regard higher estimation precision, smaller standard errors, faster convergence rates, and improved classification accuracy or regression fitness shown in various scenarios while also highlighting important properties and differences among the outlined situations. Applicability is showcased with three real-world unsupervised classification scenarios employing Gaussian mixture models. Importantly, we exemplify the natural extension of this methodology to any type of generative model by deriving an equivalent context-aware algorithm for variational autoencoders (VAs), thus broadening the spectrum of applicability to unsupervised deep learning with artificial neural networks. The latter is contrasted with a neural-symbolic algorithm exploiting side information.

摘要

这项工作研究了一类通过在生成模型中嵌入与上下文相关的变量来扩展生成模型的带有边信息的学习算法。使用有限混合模型(FMM)作为原型贝叶斯网络,我们表明,通过期望最大化(EM)对参数进行最大似然估计(MLE)可以提高常规无监督情况的性能,并且可以接近监督学习的性能,尽管没有任何显式的真实数据标签。通过直接应用缺失信息原理(MIP),可以证明这些算法的性能介于传统的监督和无监督 MLE 之间,其比例与提供的上下文辅助的信息量成正比。在各种情况下,所获得的收益包括更高的估计精度、更小的标准误差、更快的收敛速度以及改进的分类准确性或回归拟合,同时还突出了所描述情况之间的重要属性和差异。通过使用高斯混合模型的三个真实世界的无监督分类场景展示了适用性。重要的是,我们通过为变分自动编码器(VA)推导出等效的上下文感知算法,将这种方法自然地扩展到任何类型的生成模型,从而将适用范围扩展到具有人工神经网络的无监督深度学习。后者与利用边信息的神经符号算法形成对比。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验