Suppr超能文献

药物使用与肌萎缩侧索硬化症风险:利用机器学习对大型临床数据库进行暴露组全筛检

Medication use and risk of amyotrophic lateral sclerosis: using machine learning for an exposome-wide screen of a large clinical database.

机构信息

Department of Environmental Health, Harvard University T H Chan School of Public Health, Boston, MA, USA.

KSM Research and Innovation Institute, Maccabi Healthcare Services, Israel.

出版信息

Amyotroph Lateral Scler Frontotemporal Degener. 2024 May;25(3-4):367-375. doi: 10.1080/21678421.2024.2320878. Epub 2024 Mar 1.

Abstract

BACKGROUND

Accumulating evidence suggests that non-genetic factors have important etiologic roles in amyotrophic lateral sclerosis (ALS), yet identification of specific culprit factors has been challenging. Many medications target biological pathways implicated in ALS pathogenesis, and screening large pharmacologic datasets for signals could greatly accelerate the identification of risk-modulating pharmacologic factors for ALS.

METHOD

We conducted a high-dimensional screening of patients' history of medication use and ALS risk using an advanced machine learning approach based on gradient-boosted decision trees coupled with Bayesian model optimization and repeated data sampling. Clinical and medication dispensing data were obtained from a large Israeli health fund for 501 ALS cases and 4,998 matched controls using a lag period of 3 or 5 years prior to ALS diagnosis for ascertaining medication exposure.

RESULTS

Of over 1,000 different medication classes, we identified 8 classes that were consistently associated with increased ALS risk across independently trained models, where most are indicated for control of symptoms implicated in ALS. Some suggestive protective effects were also observed, notably for vitamin E.

DISCUSSION

Our results indicate that use of certain medications well before the typically recognized prodromal period was associated with ALS risk. This could result because these medications increase ALS risk or could indicate that ALS symptoms can manifest well before suggested prodromal periods. The results also provide further evidence that vitamin E may be a protective factor for ALS. Targeted studies should be performed to elucidate the possible pathophysiological mechanisms while providing insights for therapeutics design.

摘要

背景

越来越多的证据表明,非遗传因素在肌萎缩侧索硬化症(ALS)的发病机制中起着重要作用,但确定具体的致病因素一直具有挑战性。许多药物针对 ALS 发病机制中涉及的生物学途径,对大型药物数据集进行筛选可能会极大地加速确定 ALS 的调节药物因素的风险。

方法

我们使用基于梯度提升决策树的先进机器学习方法,结合贝叶斯模型优化和重复数据采样,对患者用药史和 ALS 风险进行了高维筛选。临床和用药数据来自一家大型以色列健康基金,用于 501 例 ALS 病例和 4998 例匹配对照,使用 ALS 诊断前 3 或 5 年的滞后期来确定用药暴露情况。

结果

在超过 1000 种不同的药物类别中,我们确定了 8 种药物类别,这些类别在独立训练的模型中始终与 ALS 风险增加相关,其中大多数药物用于控制 ALS 中涉及的症状。还观察到一些提示性的保护作用,特别是维生素 E。

讨论

我们的结果表明,在通常公认的前驱期之前使用某些药物与 ALS 风险相关。这可能是因为这些药物增加了 ALS 的风险,也可能表明 ALS 症状可能在建议的前驱期之前就已经出现。结果还进一步证明,维生素 E 可能是 ALS 的保护因素。应进行针对性研究,以阐明可能的病理生理机制,并为治疗设计提供见解。

相似文献

10
Predicting amyotrophic lateral sclerosis (ALS) progression with machine learning.用机器学习预测肌萎缩侧索硬化症(ALS)的进展。
Amyotroph Lateral Scler Frontotemporal Degener. 2024 May;25(3-4):242-255. doi: 10.1080/21678421.2023.2285443. Epub 2023 Dec 5.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验