Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China.
Department of Chemistry, University of California, Davis, Davis, California 95616, United States.
J Am Chem Soc. 2024 Mar 13;146(10):6544-6556. doi: 10.1021/jacs.3c11266. Epub 2024 Mar 1.
Pyrrolysine, the 22nd amino acid encoded by the natural genetic code, is essential for methanogenic archaea to catabolize methylamines into methane. The structure of pyrrolysine consists of a methylated pyrroline carboxylate that is linked to the ε-amino group of the l-lysine via an amide bond. The biosynthesis of pyrrolysine requires three enzymes: PylB, PylC, and PylD. PylB is a radical -adenosyl-l-methionine (SAM) enzyme and catalyzes the first biosynthetic step, the isomerization of l-lysine into methylornithine. PylC catalyzes an ATP-dependent ligation of methylornithine and a second l-lysine to form l-lysine-N-methylornithine. The last biosynthetic step is catalyzed by PylD via oxidation of the PylC product to form pyrrolysine. While enzymatic reactions of PylC and PylD have been well characterized by X-ray crystallography and studies, mechanistic understanding of PylB is still relatively limited. Here, we report the first activity of PylB to form methylornithine via the isomerization of l-lysine. We also identify a lysyl C4 radical intermediate that is trapped, with its electronic structure and geometric structure well characterized by EPR and ENDOR spectroscopy. In addition, we demonstrate that SAM functions as a catalytic cofactor in PylB catalysis rather than canonically as a cosubstrate. This work provides detailed mechanistic evidence for elucidating the carbon backbone rearrangement reaction catalyzed by PylB during the biosynthesis of pyrrolysine.
吡咯赖氨酸是天然遗传密码编码的第 22 种氨基酸,对于产甲烷古菌将甲基胺代谢为甲烷至关重要。吡咯赖氨酸的结构由一个甲基化的吡咯啉羧酸酯组成,通过酰胺键与 l-赖氨酸的ε-氨基相连。吡咯赖氨酸的生物合成需要三种酶:PylB、PylC 和 PylD。PylB 是一种自由基 -腺苷-l-甲硫氨酸 (SAM) 酶,催化第一个生物合成步骤,即 l-赖氨酸异构化为甲基鸟氨酸。PylC 催化依赖于 ATP 的甲基鸟氨酸和第二个 l-赖氨酸的连接,形成 l-赖氨酸-N-甲基鸟氨酸。最后一个生物合成步骤由 PylD 通过氧化 PylC 产物来催化,形成吡咯赖氨酸。虽然 PylC 和 PylD 的酶促反应已经通过 X 射线晶体学和研究得到了很好的描述,但对 PylB 的机制理解仍然相对有限。在这里,我们报告了 PylB 形成甲基鸟氨酸的第一个活性,即通过 l-赖氨酸的异构化。我们还鉴定了一个赖氨酸 C4 自由基中间体,该中间体被捕获,并通过 EPR 和 ENDOR 光谱对其电子结构和几何结构进行了很好的表征。此外,我们证明了 SAM 在 PylB 催化中作为催化辅因子而不是作为典型的共底物发挥作用。这项工作为阐明吡咯赖氨酸生物合成过程中 PylB 催化的碳骨架重排反应提供了详细的机制证据。