Wang Kai-Ni, Li Sheng-Xiao, Bu Zhenyu, Zhao Fu-Xing, Zhou Guang-Quan, Zhou Shou-Jun, Chen Yang
IEEE J Biomed Health Inform. 2024 May;28(5):2854-2865. doi: 10.1109/JBHI.2024.3370864. Epub 2024 May 6.
Automated segmentation of liver tumors in CT scans is pivotal for diagnosing and treating liver cancer, offering a valuable alternative to labor-intensive manual processes and ensuring the provision of accurate and reliable clinical assessment. However, the inherent variability of liver tumors, coupled with the challenges posed by blurred boundaries in imaging characteristics, presents a substantial obstacle to achieving their precise segmentation. In this paper, we propose a novel dual-branch liver tumor segmentation model, SBCNet, to address these challenges effectively. Specifically, our proposed method introduces a contextual encoding module, which enables a better identification of tumor variability using an advanced multi-scale adaptive kernel. Moreover, a boundary enhancement module is designed for the counterpart branch to enhance the perception of boundaries by incorporating contour learning with the Sobel operator. Finally, we propose a hybrid multi-task loss function, concurrently concerning tumors' scale and boundary features, to foster interaction across different tasks of dual branches, further improving tumor segmentation. Experimental validation on the publicly available LiTS dataset demonstrates the practical efficacy of each module, with SBCNet yielding competitive results compared to other state-of-the-art methods for liver tumor segmentation.
在CT扫描中对肝脏肿瘤进行自动分割对于肝癌的诊断和治疗至关重要,它为劳动强度大的手动分割过程提供了有价值的替代方案,并确保提供准确可靠的临床评估。然而,肝脏肿瘤的内在变异性,再加上成像特征中边界模糊带来的挑战,对实现其精确分割构成了重大障碍。在本文中,我们提出了一种新颖的双分支肝脏肿瘤分割模型SBCNet,以有效应对这些挑战。具体而言,我们提出的方法引入了一个上下文编码模块,该模块使用先进的多尺度自适应内核能够更好地识别肿瘤变异性。此外,为对应分支设计了一个边界增强模块,通过将轮廓学习与Sobel算子相结合来增强对边界的感知。最后,我们提出了一种混合多任务损失函数,同时关注肿瘤的尺度和边界特征,以促进双分支不同任务之间的交互,进一步改善肿瘤分割。在公开可用的LiTS数据集上的实验验证证明了每个模块的实际效果,与其他用于肝脏肿瘤分割的先进方法相比,SBCNet取得了具有竞争力的结果。