Suppr超能文献

用于高性能锂氧电池的多孔多金属氧化物纳米纤维的分级互连三维催化剂结构

Hierarchically Interconnected 3D Catalyst Structure of Porous Multi-Metal Oxide Nanofibers for High-Performance Li-O Batteries.

作者信息

Lee Keon Beom, Jo Seunghwan, Zhang Liting, Kim Min-Cheol, Sohn Jung Inn

机构信息

Division of Physics and Semiconductor Science, Dongguk University-Seoul, Seoul, 04620, Republic of Korea.

出版信息

Small Methods. 2024 Aug;8(8):e2301728. doi: 10.1002/smtd.202301728. Epub 2024 Mar 1.

Abstract

Non-aqueous lithium-oxygen batteries (LOBs) have emerged as a promising candidate due to their high theoretical energy density and eco-friendly cathode reaction materials. However, LOBs still suffer from high overpotential and poor cycling stability resulting from difficulties in the decomposition of discharge reaction LiO products. Here, a 3D open network catalyst structure is proposed based on highly-thin and porous multi-metal oxide nanofibers (MMONFs) developed by a facile electrospinning approach coupled with a heat treatment process. The developed hierarchically interconnected 3D porous MMONFs catalyst structure with high specific surface area and porosity shows the enhanced electrochemical reaction kinetics associated with LiO formation and decomposition on the cathode surface during the charge and discharge processes. The uniquely assembled cathode materials with MMONFs exhibit excellent electrochemical performance with energy efficiency of 82% at a current density of 50 mA g and a long-term cycling stability over 100 cycles at 200 mA g with a cut-off capacity of 500 mAh g. Moreover, the optimized cathode materials exhibit a remarkable energy density of 1013 Wh kg at the 100th discharge and charge cycle, which is nearly four times higher than that of C/NMC721, which has the highest energy density among the cathode materials currently used in electric vehicles.

摘要

非水锂氧电池(LOBs)因其高理论能量密度和环保的阴极反应材料而成为一种有前途的候选电池。然而,由于放电反应LiO产物分解困难,LOBs仍然存在高过电位和循环稳定性差的问题。在此,基于通过简便的静电纺丝方法结合热处理工艺制备的超薄多孔多金属氧化物纳米纤维(MMONFs),提出了一种三维开放网络催化剂结构。所制备的具有高比表面积和孔隙率的分级互连三维多孔MMONFs催化剂结构,在充放电过程中,显示出与阴极表面LiO形成和分解相关的增强的电化学反应动力学。具有MMONFs的独特组装阴极材料表现出优异的电化学性能,在50 mA g的电流密度下能量效率为82%,在200 mA g下具有500 mAh g的截止容量时可进行超过100次的长期循环稳定性测试。此外,优化后的阴极材料在第100次充放电循环时表现出1013 Wh kg的显著能量密度,这几乎是电动汽车目前使用的阴极材料中能量密度最高的C/NMC721的四倍。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验