Suppr超能文献

基于疗效/毒性整合和二分网络建模设计针对急性髓系白血病的以患者为导向的联合疗法。

Designing patient-oriented combination therapies for acute myeloid leukemia based on efficacy/toxicity integration and bipartite network modeling.

作者信息

Mirzaie Mehdi, Gholizadeh Elham, Miettinen Juho J, Ianevski Filipp, Ruokoranta Tanja, Saarela Jani, Manninen Mikko, Miettinen Susanna, Heckman Caroline A, Jafari Mohieddin

机构信息

Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland.

Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland.

出版信息

Oncogenesis. 2024 Mar 1;13(1):11. doi: 10.1038/s41389-024-00510-9.

Abstract

Acute myeloid leukemia (AML), a heterogeneous and aggressive blood cancer, does not respond well to single-drug therapy. A combination of drugs is required to effectively treat this disease. Computational models are critical for combination therapy discovery due to the tens of thousands of two-drug combinations, even with approved drugs. While predicting synergistic drugs is the focus of current methods, few consider drug efficacy and potential toxicity, which are crucial for treatment success. To find effective new drug candidates, we constructed a bipartite network using patient-derived tumor samples and drugs. The network is based on drug-response screening and summarizes all treatment response heterogeneity as drug response weights. This bipartite network is then projected onto the drug part, resulting in the drug similarity network. Distinct drug clusters were identified using community detection methods, each targeting different biological processes and pathways as revealed by enrichment and pathway analysis of the drugs' protein targets. Four drugs with the highest efficacy and lowest toxicity from each cluster were selected and tested for drug sensitivity using cell viability assays on various samples. Results show that ruxolitinib-ulixertinib and sapanisertib-LY3009120 are the most effective combinations with the least toxicity and the best synergistic effect on blast cells. These findings lay the foundation for personalized and successful AML therapies, ultimately leading to the development of drug combinations that can be used alongside standard first-line AML treatment.

摘要

急性髓系白血病(AML)是一种异质性且侵袭性的血癌,对单药治疗反应不佳。需要联合用药才能有效治疗这种疾病。由于有成千上万种两药组合,即使是使用已获批药物,计算模型对于联合治疗的发现也至关重要。虽然预测协同药物是当前方法的重点,但很少有方法考虑药物疗效和潜在毒性,而这对于治疗成功至关重要。为了找到有效的新药候选物,我们使用患者来源的肿瘤样本和药物构建了一个二分网络。该网络基于药物反应筛选,并将所有治疗反应异质性总结为药物反应权重。然后将这个二分网络投影到药物部分,得到药物相似性网络。使用社区检测方法识别出不同的药物簇,通过对药物蛋白质靶点的富集和通路分析揭示,每个簇针对不同的生物学过程和通路。从每个簇中选择四种疗效最高、毒性最低的药物,并使用细胞活力测定法对各种样本进行药物敏感性测试。结果表明,芦可替尼-乌利西替尼和司帕替尼-LY3009120是最有效的组合,毒性最小,对原始细胞的协同作用最佳。这些发现为个性化且成功的AML治疗奠定了基础,最终促成可与标准一线AML治疗联合使用的药物组合的开发。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee9d/10907624/0c0c086efff4/41389_2024_510_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验