Suppr超能文献

一种基于能量分布蛋白质比较的结构与进化分析快速方法。

A fast approach for structural and evolutionary analysis based on energetic profile protein comparison.

作者信息

Choopanian Peyman, Andressoo Jaan-Olle, Mirzaie Mehdi

机构信息

Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.

Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Stockholm, Sweden.

出版信息

Nat Commun. 2025 Mar 6;16(1):2231. doi: 10.1038/s41467-025-57374-9.

Abstract

In structural bioinformatics, the efficiency of predicting protein similarity, function, and evolutionary relationships is crucial. Our approach proposed herein leverages protein energy profiles derived from a knowledge-based potential, deviating from traditional methods relying on structural alignment or atomic distances. This method assigns unique energy profiles to individual proteins, facilitating rapid comparative analysis for both structural similarities and evolutionary relationships across various hierarchical levels. Our study demonstrates that energy profiles contain substantial information about protein structure at class, fold, superfamily, and family levels. Notably, these profiles accurately distinguish proteins across species, illustrated by the classification of coronavirus spike glycoproteins and bacteriocin proteins. Introducing a separation measure based on energy profile similarity, our method shows significant correlation with a network-based approach, emphasizing the potential of energy profiles as efficient predictors for drug combinations with faster computational requirements. Our key insight is that the sequence-based energy profile strongly correlates with structure-derived energy, enabling rapid and efficient protein comparisons based solely on sequences.

摘要

在结构生物信息学中,预测蛋白质相似性、功能和进化关系的效率至关重要。本文提出的方法利用基于知识势能推导的蛋白质能量分布,有别于依赖结构比对或原子距离的传统方法。该方法为单个蛋白质赋予独特的能量分布,便于在不同层次水平上对结构相似性和进化关系进行快速比较分析。我们的研究表明,能量分布在类、折叠、超家族和家族水平上包含有关蛋白质结构的大量信息。值得注意的是,这些分布能准确区分不同物种的蛋白质,冠状病毒刺突糖蛋白和细菌素蛋白的分类就说明了这一点。通过引入基于能量分布相似性的分离度量,我们的方法与基于网络的方法显示出显著相关性,强调了能量分布作为具有更快计算需求的药物组合高效预测指标的潜力。我们的关键见解是,基于序列的能量分布与结构衍生能量密切相关,从而能够仅基于序列进行快速高效的蛋白质比较。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验