Suppr超能文献

通过特征粗化提高深度学习在预测大规模地质二氧化碳封存建模方面的性能。

Improving deep learning performance for predicting large-scale geological [Formula: see text] sequestration modeling through feature coarsening.

作者信息

Yan Bicheng, Harp Dylan Robert, Chen Bailian, Pawar Rajesh J

机构信息

King Abdullah University of Science and Technology, Thuwal, Saudi Arabia 23955.

Earth and Environmental Sciences, Los Alamos National Laboratory, Los Alamos, NM 87544 USA.

出版信息

Sci Rep. 2022 Nov 30;12(1):20667. doi: 10.1038/s41598-022-24774-6.

Abstract

Physics-based reservoir simulation for fluid flow in porous media is a numerical simulation method to predict the temporal-spatial patterns of state variables (e.g. pressure p) in porous media, and usually requires prohibitively high computational expense due to its non-linearity and the large number of degrees of freedom (DoF). This work describes a deep learning (DL) workflow to predict the pressure evolution as fluid flows in large-scale 3-dimensional(3D) heterogeneous porous media. In particular, we develop an efficient feature coarsening technique to extract the most representative information and perform the training and prediction of DL at the coarse scale, and further recover the resolution at the fine scale by spatial interpolation. We validate the DL approach to predict pressure field against physics-based simulation data for a field-scale 3D geologic [Formula: see text] sequestration reservoir model. We evaluate the impact of feature coarsening on DL performance, and observe that the feature coarsening not only decreases the training time by [Formula: see text] and reduces the memory consumption by [Formula: see text], but also maintains temporal error [Formula: see text] on average. Besides, the DL workflow provides predictive efficiency with 1406 times speedup compared to physics-based numerical simulation. The key findings from this research significantly improve the training and prediction efficiency of deep learning model to deal with large-scale heterogeneous reservoir models, and thus it can also be further applied to accelerate workflows of history matching and reservoir optimization for close-loop reservoir management.

摘要

基于物理的多孔介质中流体流动储层模拟是一种数值模拟方法,用于预测多孔介质中状态变量(如压力p)的时空分布模式,由于其非线性和大量自由度,通常需要极高的计算成本。这项工作描述了一种深度学习(DL)工作流程,用于预测大规模三维(3D)非均质多孔介质中流体流动时的压力演化。具体而言,我们开发了一种高效的特征粗化技术,以提取最具代表性的信息,并在粗尺度上进行DL的训练和预测,然后通过空间插值在细尺度上恢复分辨率。我们针对一个场尺度的3D地质[公式:见正文]封存储层模型,验证了DL方法预测压力场与基于物理模拟数据的对比情况。我们评估了特征粗化对DL性能的影响,观察到特征粗化不仅将训练时间减少了[公式:见正文],将内存消耗降低了[公式:见正文],而且平均保持了时间误差[公式:见正文]。此外,与基于物理的数值模拟相比,DL工作流程提供了1406倍的预测效率提升。这项研究的关键发现显著提高了深度学习模型处理大规模非均质储层模型的训练和预测效率,因此它还可以进一步应用于加速历史拟合和储层优化工作流程,以实现闭环储层管理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d875/9712509/379a2f82df95/41598_2022_24774_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验