Suppr超能文献

一名患者两例根尖周炎病例的根管内微生物群特征:与唾液和牙菌斑特征的比较。

Intracanal microbiome profiles of two apical periodontitis cases in one patient: A comparison with saliva and plaque profiles.

作者信息

Yamaki Keiko, Tamahara Toru, Washio Jumpei, Sato Takuichi, Shimizu Ritsuko, Yamada Satoru

机构信息

Division of Periodontology and Endodontology, Graduate School of Dentistry, Tohoku University, Sendai, Japan.

Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.

出版信息

Clin Exp Dent Res. 2024 Apr;10(2):e862. doi: 10.1002/cre2.862.

Abstract

OBJECTIVES

To determine the characteristics of the endodontic microbiome.

MATERIAL AND METHODS

Saliva, plaque, and infected root canal wall dentin of two teeth suffering from apical periodontitis were harvested from a 58-year-old man. Bacterial DNA was extracted from each sample, and 16S rRNA gene analysis targeting the V3-V4 region was conducted on the Illumina MiSeq platform using QIIME2. The functional potential of the microbiomes was inferred using PICRUSt2.

RESULTS

The four microbiomes were different in structure and membership, yet the nine most abundant metabolic pathways were common among them. The two endodontic microbiomes were more anaerobic, rich in Firmicutes, and scarce in Actinobacteriota and Proteobacteria, compared with saliva and plaque microbiomes. Their profiles were dissimilar despite their clinical and radiographic similarities.

CONCLUSIONS

The endodontic microbiomes were anaerobic, rich in Firmicutes, scarce in Actinobacteriota and Proteobacteria, and considerably varied within an individual.

摘要

目的

确定牙髓微生物群的特征。

材料与方法

从一名58岁男性身上采集了两颗患有根尖周炎牙齿的唾液、牙菌斑和感染根管壁牙本质。从每个样本中提取细菌DNA,并使用QIIME2在Illumina MiSeq平台上针对V3-V4区域进行16S rRNA基因分析。使用PICRUSt2推断微生物群的功能潜力。

结果

这四种微生物群在结构和组成上有所不同,但其中九个最丰富的代谢途径是共有的。与唾液和牙菌斑微生物群相比,这两个牙髓微生物群更厌氧,厚壁菌门丰富,放线菌门和变形菌门稀少。尽管它们在临床和影像学上相似,但其特征却不相同。

结论

牙髓微生物群是厌氧的,厚壁菌门丰富,放线菌门和变形菌门稀少,且个体内差异很大。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef0d/10909803/4e5bcb5d0a3c/CRE2-10-e862-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验