Suppr超能文献

减少中国建筑材料隐含排放:建筑材料实现碳中和的机遇与挑战。

Reducing China's building material embodied emissions: Opportunities and challenges to achieve carbon neutrality in building materials.

作者信息

Lu Hongyou, You Kairui, Feng Wei, Zhou Nan, Fridley David, Price Lynn, de la Rue du Can Stephane

机构信息

Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.

Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.

出版信息

iScience. 2024 Jan 26;27(3):109028. doi: 10.1016/j.isci.2024.109028. eCollection 2024 Mar 15.

Abstract

Embodied emissions from the production of building materials account for 17% of China's carbon dioxide (CO) emissions and are important to focus on as China aims to achieve its carbon neutrality goals. However, there is a lack of systematic assessments on embodied emissions reduction potential of building materials that consider both the heterogeneous industrial characteristics as well as the Chinese buildings sector context. Here, we developed an integrated model that combines future demand of building materials in China with the strategies to reduce CO emissions associated with their production, using, and recycling. We found that measures to improve material efficiency in the value-chain has the largest CO mitigation potential before 2030 in both Low Carbon and Carbon Neutrality Scenarios, and continues to be significant through 2060. Policies to accelerate material efficiency practices, such as incorporating embodied emissions in building codes and conducting robust research, development, and demonstration (RD&D) in carbon removal are critical.

摘要

建筑材料生产过程中的隐含排放占中国二氧化碳(CO₂)排放量的17%,在中国致力于实现碳中和目标的过程中,这是一个值得重点关注的领域。然而,目前缺乏对建筑材料隐含排放减排潜力的系统性评估,这种评估既没有考虑到不同行业的特点,也没有结合中国建筑行业的实际情况。在此,我们开发了一个综合模型,该模型将中国未来的建筑材料需求与减少建筑材料生产、使用和回收过程中CO₂排放的策略相结合。我们发现,在低碳和碳中和情景下,提高价值链中材料效率的措施在2030年前具有最大的CO₂减排潜力,并将持续到2060年。加快材料效率实践的政策,如将隐含排放纳入建筑规范,以及在碳去除方面进行强有力的研究、开发和示范(RD&D),至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/219e/10906394/f857b4d01217/fx1.jpg

相似文献

1
Reducing China's building material embodied emissions: Opportunities and challenges to achieve carbon neutrality in building materials.
iScience. 2024 Jan 26;27(3):109028. doi: 10.1016/j.isci.2024.109028. eCollection 2024 Mar 15.
2
Incorporating health co-benefits into technology pathways to achieve China's 2060 carbon neutrality goal: a modelling study.
Lancet Planet Health. 2021 Nov;5(11):e808-e817. doi: 10.1016/S2542-5196(21)00252-7. Epub 2021 Nov 7.
3
Weighing China's embodied CO2 emissions and value added under global value chains: Trends, characteristics, and paths.
J Environ Manage. 2022 Aug 15;316:115302. doi: 10.1016/j.jenvman.2022.115302. Epub 2022 May 19.
4
Research on the pathway of digital technology to drive China's energy sector to achieve its carbon neutrality goal.
Environ Sci Pollut Res Int. 2023 Dec;30(58):122663-122676. doi: 10.1007/s11356-023-30408-9. Epub 2023 Nov 16.
5
Accelerating carbon neutrality could help China's energy system align with below 1.5 °C.
J Environ Manage. 2023 Jul 1;337:117753. doi: 10.1016/j.jenvman.2023.117753. Epub 2023 Mar 17.
6
CO emissions of constructing China's power grid towards carbon-neutral target: Based on top-down and bottom-up integrated model.
Environ Sci Pollut Res Int. 2023 Jul;30(34):82083-82093. doi: 10.1007/s11356-023-28135-2. Epub 2023 Jun 15.
7
The road to carbon neutrality in China's building sector.
iScience. 2024 Aug 3;27(9):110664. doi: 10.1016/j.isci.2024.110664. eCollection 2024 Sep 20.
8
Uncertainty quantification of CO emissions from China's civil aviation industry to 2050.
J Environ Manage. 2023 Jun 15;336:117624. doi: 10.1016/j.jenvman.2023.117624. Epub 2023 Mar 1.
9
Migration of manufacturing industries and transfer of carbon emissions embodied in trade: empirical evidence from China and Thailand.
Environ Sci Pollut Res Int. 2023 Feb;30(10):25037-25049. doi: 10.1007/s11356-021-14674-z. Epub 2021 Jun 5.
10
The evolution characteristics and influence factors of carbon productivity in China's industrial sector: from the perspective of embodied carbon emissions.
Environ Sci Pollut Res Int. 2021 Sep;28(36):50611-50622. doi: 10.1007/s11356-021-14271-0. Epub 2021 May 8.

引用本文的文献

1
Mitigating emissions and costs through demand-side solutions in Chinese residential buildings.
Nat Commun. 2025 Aug 9;16(1):7358. doi: 10.1038/s41467-025-62675-0.

本文引用的文献

5
The sponge effect and carbon emission mitigation potentials of the global cement cycle.
Nat Commun. 2020 Jul 29;11(1):3777. doi: 10.1038/s41467-020-17583-w.
8
Towards sustainable concrete.
Nat Mater. 2017 Jun 27;16(7):698-699. doi: 10.1038/nmat4930.
9
Carbon Capture in the Cement Industry: Technologies, Progress, and Retrofitting.
Environ Sci Technol. 2016 Jan 5;50(1):368-77. doi: 10.1021/acs.est.5b03508. Epub 2015 Dec 17.
10
The roles of energy and material efficiency in meeting steel industry CO2 targets.
Environ Sci Technol. 2013 Apr 2;47(7):3455-62. doi: 10.1021/es3031424. Epub 2013 Mar 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验