Al Faysal Abdullah, Cetinkaya Ahmet, Kaya Sariye Irem, Erdoğan Taner, Ozkan Sibel A, Gölcü Ayşegül
Faculty of Sciences and Letters, Department of Chemistry, Istanbul Technical University, Maslak, Istanbul 34469, Turkey.
Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara 06560, Turkey.
ACS Omega. 2024 Feb 12;9(8):9564-9576. doi: 10.1021/acsomega.3c09399. eCollection 2024 Feb 27.
Acyclovir (ACV), a synthetic nucleoside derivative of purine, is one of the most potent antiviral medications recommended in the specific management of varicella-zoster and herpes simplex viruses. The molecularly imprinted polymer (MIP) was utilized to create an effective and specific electrochemical sensor using a straightforward photopolymerization process to determine ACV. The polymeric thin coating was developed using the template molecule ACV, a functional monomer acrylamide, a basic monomer 2-hydroxyethyl methacrylate, a cross-linker ethylene glycol dimethacrylate, and a photoinitiator 2-hydroxy-2-methyl propiophenone on the exterior of the glassy carbon electrode (GCE). Scanning electron microscopy, attenuated total reflectance-Fourier transform infrared spectroscopy, electrochemical impedance spectroscopy, and cyclic voltammetry were employed for the purpose of characterizing the constructed sensor (AM-ACV@MIP/GCE). Differential pulse voltammetry and a 5 mM ferrocyanide/ferricyanide ([Fe(CN)]) redox reagent were used to detect the ACV binding to the specific cavities on MIP. The study involves density functional theory (DFT) calculations, which were conducted to investigate template-functional monomer interactions thoroughly, calculate template-functional monomer interaction energies, and determine the optimal template/functional monomer ratio. DFT calculations were performed using Becke's three-parameter hybrid functional with the Lee-Yang-Parr correlation functional (B3LYP) method and 6-31G(d,p) basis set. The sensor exhibits linear performance throughout the concentration region 1 × 10 to 1 × 10 M, and the limit of detection and limit of quantification were 7.15 × 10 M and 2.38 × 10 M, respectively. For the electrochemical study of ACV, the sensor demonstrated high accuracy, precision, robustness, and a short detection time. Furthermore, the developed electrochemical sensor exhibited exceptional recovery in tablet dosage form and commercial human blood samples, with recoveries of 99.40 and 100.44%, respectively. The findings showed that the AM-ACV@MIP/GCE sensor would effectively be used to directly assess pharmaceuticals from actual specimens and would particularly detect ACV compared to structurally similar pharmaceutical compounds.
阿昔洛韦(ACV)是一种嘌呤的合成核苷衍生物,是水痘 - 带状疱疹病毒和单纯疱疹病毒特定治疗中推荐使用的最有效的抗病毒药物之一。分子印迹聚合物(MIP)被用于通过简单的光聚合过程创建一种有效且特异性的电化学传感器来测定阿昔洛韦。在玻碳电极(GCE)表面,使用模板分子阿昔洛韦、功能单体丙烯酰胺、碱性单体甲基丙烯酸2 - 羟乙酯、交联剂乙二醇二甲基丙烯酸酯和光引发剂2 - 羟基 - 2 - 甲基苯丙酮制备聚合物薄涂层。采用扫描电子显微镜、衰减全反射 - 傅里叶变换红外光谱、电化学阻抗谱和循环伏安法对构建的传感器(AM - ACV@MIP/GCE)进行表征。使用差分脉冲伏安法和5 mM铁氰化物/亚铁氰化物([Fe(CN)])氧化还原试剂检测阿昔洛韦与MIP上特定空腔的结合。该研究涉及密度泛函理论(DFT)计算,进行这些计算是为了深入研究模板 - 功能单体相互作用、计算模板 - 功能单体相互作用能以及确定最佳模板/功能单体比例。DFT计算使用带有Lee - Yang - Parr相关泛函(B3LYP)方法和6 - 31G(d,p)基组的Becke三参数混合泛函进行。该传感器在1×10至1×10 M的浓度范围内表现出线性性能,检测限和定量限分别为7.15×10 M和2.38×10 M。对于阿昔洛韦的电化学研究,该传感器具有高准确性、精密度、稳健性和短检测时间。此外,所开发的电化学传感器在片剂剂型和商业人类血液样本中表现出优异的回收率,分别为99.40%和100.44%。研究结果表明,AM - ACV@MIP/GCE传感器可有效地用于直接评估实际样本中的药物,并且与结构相似的药物化合物相比,能够特别检测出阿昔洛韦。