Suppr超能文献

光学图谱:检测耐甲氧西林金黄色葡萄球菌中的基因组抗性盒

Optical Mapping: Detecting Genomic Resistance Cassettes in MRSA.

作者信息

Ruppeka-Rupeika Elizabete, Abakumov Sergey, Engelbrecht Mattias, Chen Xiong, do Carmo Linhares Debora, Bouwens Arno, Leen Volker, Hofkens Johan

机构信息

Chemistry, KU Leuven Faculty of Science, Celestijnenlaan 200F, Leuven, Flanders 3001, Belgium.

Perseus Biomics B.V., Industriepark 6 bus 3, Tienen 3300, Belgium.

出版信息

ACS Omega. 2024 Feb 13;9(8):8862-8873. doi: 10.1021/acsomega.3c05902. eCollection 2024 Feb 27.

Abstract

Methicillin-resistant (MRSA) is a multidrug-resistant bacterium with a global presence in healthcare facilities as well as community settings. The resistance of MRSA to beta-lactam antibiotics can be attributed to a mobile genetic element called the staphylococcal cassette chromosome (SCC), ranging from 23 to 68 kilobase pairs in length. The mec gene complex contained in SCC allows MRSA to survive in the presence of penicillin and other beta-lactam antibiotics. We demonstrate that optical mapping (OM) is able to identify the bacterium as , followed by an investigation of the presence of kilobase pair range SCC elements by examining the associated OM-generated barcode patterns. By employing OM as an alternative to traditional DNA sequencing, we showcase its potential for the detection of complex genetic elements such as SCC in MRSA. This approach holds promise for enhancing our understanding of antibiotic resistance mechanisms and facilitating the development of targeted interventions against MRSA infections.

摘要

耐甲氧西林金黄色葡萄球菌(MRSA)是一种多重耐药细菌,在医疗机构和社区环境中均有全球分布。MRSA对β-内酰胺类抗生素的耐药性可归因于一种称为葡萄球菌盒式染色体(SCC)的可移动遗传元件,其长度在23至68千碱基对之间。SCC中包含的mec基因复合体使MRSA能够在青霉素和其他β-内酰胺类抗生素存在的情况下存活。我们证明光学图谱(OM)能够识别该细菌,随后通过检查相关的OM生成的条形码模式来研究千碱基对范围的SCC元件的存在。通过使用OM替代传统的DNA测序,我们展示了其在检测MRSA中复杂遗传元件(如SCC)方面的潜力。这种方法有望增强我们对抗生素耐药机制的理解,并促进针对MRSA感染的靶向干预措施的开发。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe41/10905696/af78eb003ad1/ao3c05902_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验