O'Dea Connor J, Isokuortti Jussi, Comer Emma E, Roberts Sean T, Page Zachariah A
Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712 ,United States.
ACS Cent Sci. 2024 Jan 16;10(2):272-282. doi: 10.1021/acscentsci.3c01263. eCollection 2024 Feb 28.
The rapid photochemical conversion of materials from liquid to solid (i.e., curing) has enabled the fabrication of modern plastics used in microelectronics, dentistry, and medicine. However, industrialized photocurables remain restricted to unimolecular bond homolysis reactions (Type I photoinitiations) that are driven by high-energy UV light. This narrow mechanistic scope both challenges the production of high-resolution objects and restricts the materials that can be produced using emergent manufacturing technologies (e.g., 3D printing). Herein we develop a photosystem based on triplet-triplet annihilation upconversion (TTA-UC) that efficiently drives a Type I photocuring process using green light at low power density (<10 mW/cm) and in the presence of ambient oxygen. This system also exhibits a superlinear dependence of its cure depth on the light exposure intensity, which enhances spatial resolution. This enables for the first-time integration of TTA-UC in an inexpensive, rapid, and high-resolution manufacturing process, digital light processing (DLP) 3D printing. Moreover, relative to traditional Type I and Type II (photoredox) strategies, the present TTA-UC photoinitiation method results in improved cure depth confinement and resin shelf stability. This report provides a user-friendly avenue to utilize TTA-UC in ambient photochemical processes and paves the way toward fabrication of next-generation plastics with improved geometric precision and functionality.
材料从液体到固体的快速光化学转化(即固化)使得微电子、牙科和医学中使用的现代塑料的制造成为可能。然而,工业化的光固化材料仍然局限于由高能紫外光驱动的单分子键均裂反应(I型光引发)。这种狭窄的作用机制既对高分辨率物体的生产构成挑战,也限制了使用新兴制造技术(如3D打印)可生产的材料。在此,我们开发了一种基于三重态-三重态湮灭上转换(TTA-UC)的光系统,该系统在低功率密度(<10 mW/cm²)且存在环境氧气的情况下,使用绿光有效驱动I型光固化过程。该系统的固化深度对光暴露强度也表现出超线性依赖性,从而提高了空间分辨率。这首次实现了将TTA-UC集成到一种廉价、快速且高分辨率的制造工艺——数字光处理(DLP)3D打印中。此外,相对于传统的I型和II型(光氧化还原)策略,目前的TTA-UC光引发方法在固化深度限制和树脂储存稳定性方面有所改进。本报告提供了一条在环境光化学过程中利用TTA-UC的用户友好途径,并为制造具有更高几何精度和功能的下一代塑料铺平了道路。