Ren Hao, Yuan Jian, Li Yi-Ming, Li Wen-Jing, Guo Yi-Hang, Zhang Yi-Bo, Wang Bing-Hao, Ma Kaili, Peng Lu, Hu Guping, Wang Wen-Qi, He Hailong, Chou Lien-Yang, Zeng Ming-Hua, Zhang Yue-Biao, Cheng Lin
Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
Avogadral Solutions, 3130 Grants Lake Boulevard #18641, Sugar Land, Texas 77496, United States.
ACS Cent Sci. 2024 Jan 18;10(2):358-366. doi: 10.1021/acscentsci.3c01432. eCollection 2024 Feb 28.
Encapsulating enzymes within metal-organic frameworks has enhanced their structural stability and interface tunability for catalysis. However, the small apertures of the frameworks restrict their effectiveness to small organic molecules. Herein, we present a green strategy directed by visible linker micelles for the aqueous synthesis of MAF-6 that enables enzymes for the catalytic asymmetric synthesis of chiral molecules. Due to the large pore aperture (7.6 Å), double the aperture size of benchmark ZIF-8 (3.4 Å), MAF-6 allows encapsulated enzyme BCL to access larger substrates and do so faster. Through the optimization of surfactants' effect during synthesis, BCL@MAF-6-SDS (SDS = sodium dodecyl sulfate) displayed a catalytic efficiency (/) that was 420 times greater than that of BCL@ZIF-8. This biocomposite efficiently catalyzed the synthesis of drug precursor molecules with 94-99% enantioselectivity and nearly quantitative yields. These findings represent a deeper understanding of de novo synthetic encapsulation of enzyme in MOFs, thereby unfolding the great potential of enzyme@MAF catalysts for asymmetric synthesis of organics and pharmaceuticals.
将酶封装在金属有机框架内可增强其结构稳定性和催化界面可调性。然而,框架的小孔径限制了它们对小分子有机物的催化效果。在此,我们提出一种由可见连接体胶束指导的绿色策略,用于水相合成MAF-6,该策略可使酶用于手性分子的催化不对称合成。由于MAF-6的孔径较大(7.6 Å),是基准ZIF-8孔径(3.4 Å)的两倍,因此MAF-6能让封装的酶BCL接触更大的底物,且速度更快。通过优化合成过程中表面活性剂的作用,BCL@MAF-6-SDS(SDS = 十二烷基硫酸钠)的催化效率(/)比BCL@ZIF-8高420倍。这种生物复合材料能高效催化药物前体分子的合成,对映体选择性达94 - 99%,产率接近定量。这些发现代表了对酶在金属有机框架中的从头合成封装有了更深入的理解,从而展现了酶@MAF催化剂在有机化合物和药物不对称合成方面的巨大潜力。