School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P.R. China.
Chem Rev. 2022 May 11;122(9):9078-9144. doi: 10.1021/acs.chemrev.1c00740. Epub 2022 Mar 28.
In the past two decades, metal-organic frameworks (MOFs) or porous coordination polymers (PCPs) assembled from metal ions or clusters and organic linkers via metal-ligand coordination bonds have captivated significant scientific interest on account of their high crystallinity, exceptional porosity, and tunable pore size, high modularity, and diverse functionality. The opportunity to achieve functional porous materials by design with promising properties, unattainable for solid-state materials in general, distinguishes MOFs from other classes of materials, in particular, traditional porous materials such as activated carbon, silica, and zeolites, thereby leading to complementary properties. Scientists have conducted intense research in the production of chiral MOF (CMOF) materials for specific applications including but not limited to chiral recognition, separation, and catalysis since the discovery of the first functional CMOF (i.e., d- or l-POST-1). At present, CMOFs have become interdisciplinary between chirality chemistry, coordination chemistry, and material chemistry, which involve in many subjects including chemistry, physics, optics, medicine, pharmacology, biology, crystal engineering, environmental science, etc. In this review, we will systematically summarize the recent progress of CMOFs regarding design strategies, synthetic approaches, and cutting-edge applications. In particular, we will highlight the successful implementation of CMOFs in asymmetric catalysis, enantioselective separation, enantioselective recognition, and sensing. We envision that this review will provide readers a good understanding of CMOF chemistry and, more importantly, facilitate research endeavors for the rational design of multifunctional CMOFs and their industrial implementation.
在过去的二十年中,由金属离子或簇与有机配体通过金属-配体配位键组装而成的金属有机骨架(MOFs)或多孔配位聚合物(PCPs),由于其高结晶度、独特的多孔性、可调的孔径、高模块性和多样的功能而引起了科学界的极大兴趣。通过设计获得具有理想性能的功能性多孔材料的机会,这是一般固态材料所无法实现的,这使得 MOFs 有别于其他材料类别,特别是传统的多孔材料,如活性炭、硅石和沸石,从而具有互补的性能。自从发现第一个功能性手性 MOF(即 d-或 l-POST-1)以来,科学家们一直在对手性 MOF(CMOF)材料进行深入研究,以用于特定应用,包括但不限于手性识别、分离和催化。目前,CMOFs 已经成为手性化学、配位化学和材料化学之间的交叉学科,涉及许多学科,包括化学、物理、光学、医学、药理学、生物学、晶体工程、环境科学等。在这篇综述中,我们将系统地总结 CMOFs 在设计策略、合成方法和前沿应用方面的最新进展。特别是,我们将重点介绍 CMOFs 在不对称催化、对映选择性分离、对映选择性识别和传感方面的成功应用。我们预计,这篇综述将使读者对手性 MOF 化学有一个很好的理解,更重要的是,有助于进行合理设计多功能 CMOFs 及其工业应用的研究工作。