Suppr超能文献

感染导致的捕获可用性变化可能会导致人群水平传染病参数中出现可检测到的偏差。

Changes in capture availability due to infection can lead to detectable biases in population-level infectious disease parameters.

作者信息

Holmes Iris A, Durso Andrew M, Myers Christopher R, Hendry Tory A

机构信息

Department of Microbiology, Cornell University, Ithaca, NY, United States.

Cornell Institute of Host Microbe Interactions and Disease, Cornell University, Ithaca, NY, United States.

出版信息

PeerJ. 2024 Feb 29;12:e16910. doi: 10.7717/peerj.16910. eCollection 2024.

Abstract

Correctly identifying the strength of selection that parasites impose on hosts is key to predicting epidemiological and evolutionary outcomes of host-parasite interactions. However, behavioral changes due to infection can alter the capture probability of infected hosts and thereby make selection difficult to estimate by standard sampling techniques. Mark-recapture approaches, which allow researchers to determine if some groups in a population are less likely to be captured than others, can be used to identify infection-driven capture biases. If a metric of interest directly compares infected and uninfected populations, calculated detection probabilities for both groups may be useful in identifying bias. Here, we use an individual-based simulation to test whether changes in capture rate due to infection can alter estimates of three key metrics: 1) reduction in the reproductive success of infected parents relative to uninfected parents, 2) the relative risk of infection for susceptible genotypes compared to resistant genotypes, and 3) changes in allele frequencies between generations. We explore the direction and underlying causes of the biases that emerge from these simulations. Finally, we argue that short series of mark-recapture sampling bouts, potentially implemented in under a week, can yield key data on detection bias due to infection while not adding a significantly higher burden to disease ecology studies.

摘要

正确识别寄生虫对宿主施加的选择强度是预测宿主 - 寄生虫相互作用的流行病学和进化结果的关键。然而,感染引起的行为变化会改变受感染宿主的捕获概率,从而使得通过标准采样技术难以估计选择情况。标记重捕法可让研究人员确定种群中的某些群体是否比其他群体更不容易被捕获,该方法可用于识别由感染驱动的捕获偏差。如果一个感兴趣的指标直接比较受感染和未受感染的种群,那么计算这两组的检测概率可能有助于识别偏差。在这里,我们使用基于个体的模拟来测试由于感染导致的捕获率变化是否会改变三个关键指标的估计值:1)受感染亲本相对于未受感染亲本繁殖成功率的降低;2)易感基因型与抗性基因型相比的相对感染风险;3)代际间等位基因频率的变化。我们探究了这些模拟中出现的偏差的方向和潜在原因。最后,我们认为,可能在一周内完成的短系列标记重捕采样回合可以产生有关感染导致的检测偏差的关键数据,同时不会给疾病生态学研究增加显著更高的负担。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/403e/10909344/299422b9941d/peerj-12-16910-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验