Zhang Yunfei, Zhang Lei, Tang Lingfeng, Du Ran, Zhang Baoliang
School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China.
Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University Xi'an, 710129, People's Republic of China.
ACS Nano. 2024 Mar 19;18(11):8411-8422. doi: 10.1021/acsnano.3c13057. Epub 2024 Mar 4.
Exploring anticorrosion electromagnetic wave (EMW) absorbing materials in harsh conditions remains a challenge. Herein, S-NiSe/HG nanocomposites encapsulated in room-temperature self-healing polyurethane (S-NiSe/HG/SPU) were exploited as superior anticorrosion EMW absorbing materials. A dual-defect engineering collaborative Schottky interface construction endows S-NiSe/HG with a high vacancy concentration, abundant defects, and moderate conductivity. These structural merits synergistically balance dielectric loss by enhancing dipole-interface polarization loss and optimizing conduction loss. As a result, S-NiSe/HG demonstrates the optimal EMW absorption performance with a minimum reflection loss (RL) of -54.8 dB and an adequate absorption bandwidth (EAB) of 7.1 GHz. Besides, S-NiSe/HG/SPU combines the maze effect of S-NiSe/HG with the active repair capability of SPU, thereby providing long-term corrosion resistance for the Mg alloy. Even under corrosion for 10 days, S-NiSe/HG/SPU affords a low corrosion current density (1.3 × 10 A) and high charge transfer resistance (3796 Ω cm). Overall, this work provides valuable insights for in-depth exploration of dielectric loss and development of multifunctional EMW-absorbing materials.
探索在恶劣条件下的防腐电磁波(EMW)吸收材料仍然是一项挑战。在此,封装在室温自修复聚氨酯中的S-NiSe/HG纳米复合材料(S-NiSe/HG/SPU)被开发为优异的防腐EMW吸收材料。双缺陷工程协同肖特基界面构建赋予S-NiSe/HG高空位浓度、丰富的缺陷和适度的电导率。这些结构优点通过增强偶极-界面极化损耗和优化传导损耗,协同平衡介电损耗。结果,S-NiSe/HG展现出最佳的EMW吸收性能,最小反射损耗(RL)为-54.8 dB,吸收带宽(EAB)为7.1 GHz。此外,S-NiSe/HG/SPU将S-NiSe/HG的迷宫效应与SPU的主动修复能力相结合,从而为镁合金提供长期的耐腐蚀性。即使在腐蚀10天后,S-NiSe/HG/SPU仍具有低腐蚀电流密度(1.3×10 A)和高电荷转移电阻(3796Ω·cm)。总体而言,这项工作为深入探索介电损耗和开发多功能EMW吸收材料提供了有价值的见解。