Suppr超能文献

磁电协同与多尺度层次结构设计实现灵活的多功能微波吸收与红外隐身兼容性。

Magneto-Dielectric Synergy and Multiscale Hierarchical Structure Design Enable Flexible Multipurpose Microwave Absorption and Infrared Stealth Compatibility.

作者信息

Li Chen, Liang Leilei, Zhang Baoshan, Yang Yi, Ji Guangbin

机构信息

School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, People's Republic of China.

College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, People's Republic of China.

出版信息

Nanomicro Lett. 2024 Oct 16;17(1):40. doi: 10.1007/s40820-024-01549-4.

Abstract

Developing advanced stealth devices to cope with radar-infrared (IR) fusion detection and diverse application scenarios is increasingly demanded, which faces significant challenges due to conflicting microwave and IR cloaking mechanisms and functional integration limitations. Here, we propose a multiscale hierarchical structure design, integrating wrinkled MXene IR shielding layer and flexible FeO@C/PDMS microwave absorption layer. The top wrinkled MXene layer induces the intensive diffuse reflection effect, shielding IR radiation signals while allowing microwave to pass through. Meanwhile, the permeable microwaves are assimilated into the bottom FeO@C/PDMS layer via strong magneto-electric synergy. Through theoretical and experimental optimization, the assembled stealth devices realize a near-perfect stealth capability in both X-band (8-12 GHz) and long-wave infrared (8-14 µm) wavelength ranges. Specifically, it delivers a radar cross-section reduction of - 20 dB m, a large apparent temperature modulation range (ΔT = 70 °C), and a low average IR emissivity of 0.35. Additionally, the optimal device demonstrates exceptional curved surface conformability, self-cleaning capability (contact angle ≈ 129°), and abrasion resistance (recovery time ≈ 5 s). This design strategy promotes the development of multispectral stealth technology and reinforces its applicability and durability in complex and hostile environments.

摘要

开发先进的隐身设备以应对雷达-红外(IR)融合探测及多样的应用场景的需求日益增长,然而由于微波与红外隐身机制相互冲突以及功能集成受限,这面临着重大挑战。在此,我们提出一种多尺度层次结构设计,将有褶皱的MXene红外屏蔽层与柔性FeO@C/PDMS微波吸收层相结合。顶部有褶皱的MXene层引发强烈的漫反射效应,屏蔽红外辐射信号同时允许微波通过。与此同时,透过的微波通过强磁电协同作用被底部的FeO@C/PDMS层吸收。通过理论和实验优化,组装后的隐身设备在X波段(8 - 12吉赫兹)和长波红外(8 - 14微米)波长范围内都实现了近乎完美的隐身能力。具体而言,它实现了-20分贝米的雷达散射截面缩减、较大的表观温度调制范围(ΔT = 70°C)以及0.35的低平均红外发射率。此外,优化后的设备展现出卓越的曲面贴合性、自清洁能力(接触角≈129°)和耐磨性(恢复时间≈5秒)。这种设计策略推动了多光谱隐身技术的发展,并增强了其在复杂恶劣环境中的适用性和耐久性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f0d9/11480309/030cda1e80b5/40820_2024_1549_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验