多中心发展和评估 [F]FDG PET/CT 和 CT 放射组学模型,以预测立体定向体部放射治疗的早期非小细胞肺癌的局部和/或远处复发。

Multicentric development and evaluation of [F]FDG PET/CT and CT radiomic models to predict regional and/or distant recurrence in early-stage non-small cell lung cancer treated by stereotactic body radiation therapy.

机构信息

Radiation Oncology Department, University Hospital, Brest, France.

LaTIM, INSERM, UMR 1101, Univ Brest, Brest, France.

出版信息

Eur J Nucl Med Mol Imaging. 2024 Mar;51(4):1097-1108. doi: 10.1007/s00259-023-06510-y. Epub 2023 Nov 21.

Abstract

PURPOSE

To develop machine learning models to predict regional and/or distant recurrence in patients with early-stage non-small cell lung cancer (ES-NSCLC) after stereotactic body radiation therapy (SBRT) using [F]FDG PET/CT and CT radiomics combined with clinical and dosimetric parameters.

METHODS

We retrospectively collected 464 patients (60% for training and 40% for testing) from University Hospital of Liège and 63 patients from University Hospital of Brest (external testing set) with ES-NSCLC treated with SBRT between 2010 and 2020 and who had undergone pretreatment [F]FDG PET/CT and planning CT. Radiomic features were extracted using the PyRadiomics toolbox®. The ComBat harmonization method was applied to reduce the batch effect between centers. Clinical, radiomic, and combined models were trained and tested using a neural network approach to predict regional and/or distant recurrence.

RESULTS

In the training (n = 273) and testing sets (n = 191 and n = 63), the clinical model achieved moderate performances to predict regional and/or distant recurrence with C-statistics from 0.53 to 0.59 (95% CI, 0.41, 0.67). The radiomic (original_firstorder_Entropy, original_gldm_LowGrayLevelEmphasis and original_glcm_DifferenceAverage) model achieved higher predictive ability in the training set and kept the same performance in the testing sets, with C-statistics from 0.70 to 0.78 (95% CI, 0.63, 0.88) while the combined model performs moderately well with C-statistics from 0.50 to 0.62 (95% CI, 0.37, 0.69).

CONCLUSION

Radiomic features extracted from pre-SBRT analog and digital [F]FDG PET/CT outperform clinical parameters in the prediction of regional and/or distant recurrence and to discuss an adjuvant systemic treatment in ES-NSCLC. Prospective validation of our models should now be carried out.

摘要

目的

利用[F]FDG PET/CT 和 CT 放射组学结合临床和剂量学参数,开发机器学习模型,以预测接受立体定向体部放射治疗(SBRT)的早期非小细胞肺癌(ES-NSCLC)患者的区域性和/或远处复发。

方法

我们回顾性地收集了来自列日大学医院的 464 名(60%用于训练,40%用于测试)和来自布雷斯特大学医院的 63 名(外部测试集)接受 2010 年至 2020 年间 SBRT 治疗的 ES-NSCLC 患者的资料,这些患者在治疗前进行了[F]FDG PET/CT 和计划 CT 检查。使用 PyRadiomics 工具盒®提取放射组学特征。采用 ComBat 协调方法来减少中心之间的批次效应。使用神经网络方法对临床、放射组学和联合模型进行训练和测试,以预测区域性和/或远处复发。

结果

在训练集(n=273)和测试集(n=191 和 n=63)中,临床模型在预测区域性和/或远处复发方面具有中等性能,C 统计量为 0.53 至 0.59(95%CI,0.41,0.67)。放射组学(原始一阶熵、原始 gldm_LowGrayLevelEmphasis 和原始 glcm_DifferenceAverage)模型在训练集中具有更高的预测能力,并在测试集中保持相同的性能,C 统计量为 0.70 至 0.78(95%CI,0.63,0.88),而联合模型的表现则中等,C 统计量为 0.50 至 0.62(95%CI,0.37,0.69)。

结论

在预测 ES-NSCLC 的区域性和/或远处复发方面,SBRT 前模拟和数字[F]FDG PET/CT 提取的放射组学特征优于临床参数,并讨论了辅助全身治疗的问题。现在应该进行我们模型的前瞻性验证。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索