文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

序列分类和前列腺分割算法:一项外部验证研究。

Algorithms for classification of sequences and segmentation of prostate gland: an external validation study.

机构信息

Department of Medical Imaging, First Hospital of Qinhuangdao, 066000, Qinhuangdao City, Hebei Province, China.

Department of Radiology, Beijing Friendship Hospital, Capital Medical University, 100050, Beijing, China.

出版信息

Abdom Radiol (NY). 2024 Apr;49(4):1275-1287. doi: 10.1007/s00261-024-04241-8. Epub 2024 Mar 4.


DOI:10.1007/s00261-024-04241-8
PMID:38436698
Abstract

OBJECTIVES: The aim of the study was to externally validate two AI models for the classification of prostate mpMRI sequences and segmentation of the prostate gland on T2WI. MATERIALS AND METHODS: MpMRI data from 719 patients were retrospectively collected from two hospitals, utilizing nine MR scanners from four different vendors, over the period from February 2018 to May 2022. Med3D deep learning pretrained architecture was used to perform image classification,UNet-3D was used to segment the prostate gland. The images were classified into one of nine image types by the mode. The segmentation model was validated using T2WI images. The accuracy of the segmentation was evaluated by measuring the DSC, VS,AHD.Finally,efficacy of the models was compared for different MR field strengths and sequences. RESULTS: 20,551 image groups were obtained from 719 MR studies. The classification model accuracy is 99%, with a kappa of 0.932. The precision, recall, and F1 values for the nine image types had statistically significant differences, respectively (all P < 0.001). The accuracy for scanners 1.436 T, 1.5 T, and 3.0 T was 87%, 86%, and 98%, respectively (P < 0.001). For segmentation model, the median DSC was 0.942 to 0.955, the median VS was 0.974 to 0.982, and the median AHD was 5.55 to 6.49 mm,respectively.These values also had statistically significant differences for the three different magnetic field strengths (all P < 0.001). CONCLUSION: The AI models for mpMRI image classification and prostate segmentation demonstrated good performance during external validation, which could enhance efficiency in prostate volume measurement and cancer detection with mpMRI. CLINICAL RELEVANCE STATEMENT: These models can greatly improve the work efficiency in cancer detection, measurement of prostate volume and guided biopsies.

摘要

目的:本研究旨在对两种用于前列腺磁共振成像(mpMRI)序列分类和 T2WI 前列腺分割的人工智能(AI)模型进行外部验证。

材料和方法:回顾性收集了 2018 年 2 月至 2022 年 5 月期间来自两家医院的 719 名患者的 mpMRI 数据,使用了来自四个不同供应商的九台磁共振扫描仪。采用 Med3D 深度学习预训练架构进行图像分类,采用 UNet-3D 进行前列腺分割。通过模态将图像分类为九种图像类型之一。使用 T2WI 图像验证分割模型。通过测量 DSC、VS、AHD 来评估分割的准确性。最后,比较了不同磁共振场强和序列下模型的效能。

结果:从 719 项 MRI 研究中获得了 20551 个图像组。分类模型的准确率为 99%,kappa 值为 0.932。对于九种图像类型,其精度、召回率和 F1 值均有统计学差异(均 P<0.001)。场强为 1.436 T、1.5 T 和 3.0 T 的扫描仪的准确率分别为 87%、86%和 98%(P<0.001)。对于分割模型,中位数 DSC 为 0.942 至 0.955,中位数 VS 为 0.974 至 0.982,中位数 AHD 为 5.55 至 6.49 mm,三个不同磁场强度之间的这些值也有统计学差异(均 P<0.001)。

结论:在外部验证中,用于 mpMRI 图像分类和前列腺分割的 AI 模型表现出良好的性能,这可以提高 mpMRI 前列腺体积测量和癌症检测的效率。

临床相关性声明:这些模型可以极大地提高癌症检测、前列腺体积测量和引导活检的工作效率。

相似文献

[1]
Algorithms for classification of sequences and segmentation of prostate gland: an external validation study.

Abdom Radiol (NY). 2024-4

[2]
Spatially varying accuracy and reproducibility of prostate segmentation in magnetic resonance images using manual and semiautomated methods.

Med Phys. 2014-11

[3]
The added value of AI-based computer-aided diagnosis in classification of cancer at prostate MRI.

Eur Radiol. 2023-7

[4]
Artificial Intelligence in Magnetic Resonance Imaging-based Prostate Cancer Diagnosis: Where Do We Stand in 2021?

Eur Urol Focus. 2022-3

[5]
Automated prostate gland segmentation in challenging clinical cases: comparison of three artificial intelligence methods.

Abdom Radiol (NY). 2024-5

[6]
Inter-slice bidirectional registration-based segmentation of the prostate gland in MR and CT image sequences.

Med Phys. 2013-12

[7]
A Cascaded Deep Learning-Based Artificial Intelligence Algorithm for Automated Lesion Detection and Classification on Biparametric Prostate Magnetic Resonance Imaging.

Acad Radiol. 2022-8

[8]
Deformable segmentation of 3D MR prostate images via distributed discriminative dictionary and ensemble learning.

Med Phys. 2014-7

[9]
Automated prostate multi-regional segmentation in magnetic resonance using fully convolutional neural networks.

Eur Radiol. 2023-7

[10]
Prostate cancer segmentation from MRI by a multistream fusion encoder.

Med Phys. 2023-9

本文引用的文献

[1]
Fully automated detection and localization of clinically significant prostate cancer on MR images using a cascaded convolutional neural network.

Front Oncol. 2022-9-29

[2]
Segmentation of the prostate, its zones, anterior fibromuscular stroma, and urethra on the MRIs and multimodality image fusion using U-Net model.

Quant Imaging Med Surg. 2022-10

[3]
Explainable AI for CNN-based prostate tumor segmentation in multi-parametric MRI correlated to whole mount histopathology.

Radiat Oncol. 2022-4-2

[4]
Automatic zonal segmentation of the prostate from 2D and 3D T2-weighted MRI and evaluation for clinical use.

J Med Imaging (Bellingham). 2022-3

[5]
Machine Learning in Prostate MRI for Prostate Cancer: Current Status and Future Opportunities.

Diagnostics (Basel). 2022-1-24

[6]
A Fully Automatic Artificial Intelligence System Able to Detect and Characterize Prostate Cancer Using Multiparametric MRI: Multicenter and Multi-Scanner Validation.

Front Oncol. 2021-10-1

[7]
The Reproducibility of Deep Learning-Based Segmentation of the Prostate Gland and Zones on T2-Weighted MR Images.

Diagnostics (Basel). 2021-9-16

[8]
Radiomics, machine learning, and artificial intelligence-what the neuroradiologist needs to know.

Neuroradiology. 2021-12

[9]
Checklist for Artificial Intelligence in Medical Imaging (CLAIM): A Guide for Authors and Reviewers.

Radiol Artif Intell. 2020-3-25

[10]
Radiomics Models Based on Apparent Diffusion Coefficient Maps for the Prediction of High-Grade Prostate Cancer at Radical Prostatectomy: Comparison With Preoperative Biopsy.

J Magn Reson Imaging. 2021-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索