文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于卷积神经网络的多参数 MRI 前列腺肿瘤分割的可解释人工智能与全组织病理相关。

Explainable AI for CNN-based prostate tumor segmentation in multi-parametric MRI correlated to whole mount histopathology.

机构信息

Department of Radiology, Medical Physics, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.

German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany.

出版信息

Radiat Oncol. 2022 Apr 2;17(1):65. doi: 10.1186/s13014-022-02035-0.


DOI:10.1186/s13014-022-02035-0
PMID:35366918
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8976981/
Abstract

Automatic prostate tumor segmentation is often unable to identify the lesion even if multi-parametric MRI data is used as input, and the segmentation output is difficult to verify due to the lack of clinically established ground truth images. In this work we use an explainable deep learning model to interpret the predictions of a convolutional neural network (CNN) for prostate tumor segmentation. The CNN uses a U-Net architecture which was trained on multi-parametric MRI data from 122 patients to automatically segment the prostate gland and prostate tumor lesions. In addition, co-registered ground truth data from whole mount histopathology images were available in 15 patients that were used as a test set during CNN testing. To be able to interpret the segmentation results of the CNN, heat maps were generated using the Gradient Weighted Class Activation Map (Grad-CAM) method. The CNN achieved a mean Dice Sorensen Coefficient 0.62 and 0.31 for the prostate gland and the tumor lesions -with the radiologist drawn ground truth and 0.32 with whole-mount histology ground truth for tumor lesions. Dice Sorensen Coefficient between CNN predictions and manual segmentations from MRI and histology data were not significantly different. In the prostate the Grad-CAM heat maps could differentiate between tumor and healthy prostate tissue, which indicates that the image information in the tumor was essential for the CNN segmentation.

摘要

自动前列腺肿瘤分割即使使用多参数 MRI 数据作为输入,也常常无法识别病变,并且由于缺乏临床确立的真实图像,分割输出难以验证。在这项工作中,我们使用了一种可解释的深度学习模型来解释卷积神经网络 (CNN) 对前列腺肿瘤分割的预测。该 CNN 使用 U-Net 架构,该架构基于来自 122 名患者的多参数 MRI 数据进行训练,以自动分割前列腺腺体和前列腺肿瘤病变。此外,在 15 名患者中还提供了全载玻片组织病理学图像的配准的真实数据,这些数据在 CNN 测试期间被用作测试集。为了能够解释 CNN 的分割结果,使用梯度加权类激活映射 (Grad-CAM) 方法生成热图。该 CNN 针对前列腺和肿瘤病变,在与放射科医生绘制的真实数据和全载玻片组织学真实数据进行比较时,分别达到了 0.62 和 0.31 的平均 Dice Sorensen 系数 - 0.32 用于肿瘤病变。CNN 预测值与 MRI 和组织学数据的手动分割之间的 Dice Sorensen 系数没有显著差异。在前列腺中,Grad-CAM 热图可以区分肿瘤和健康的前列腺组织,这表明肿瘤中的图像信息对 CNN 分割至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ab1/8976981/bc1b46444646/13014_2022_2035_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ab1/8976981/14047c8f6b59/13014_2022_2035_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ab1/8976981/1863d9b2cdfd/13014_2022_2035_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ab1/8976981/2324f52ac359/13014_2022_2035_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ab1/8976981/cc40dd1fccc5/13014_2022_2035_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ab1/8976981/33141108cdb2/13014_2022_2035_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ab1/8976981/bc1b46444646/13014_2022_2035_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ab1/8976981/14047c8f6b59/13014_2022_2035_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ab1/8976981/1863d9b2cdfd/13014_2022_2035_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ab1/8976981/2324f52ac359/13014_2022_2035_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ab1/8976981/cc40dd1fccc5/13014_2022_2035_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ab1/8976981/33141108cdb2/13014_2022_2035_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ab1/8976981/bc1b46444646/13014_2022_2035_Fig6_HTML.jpg

相似文献

[1]
Explainable AI for CNN-based prostate tumor segmentation in multi-parametric MRI correlated to whole mount histopathology.

Radiat Oncol. 2022-4-2

[2]
Comparison of data fusion strategies for automated prostate lesion detection using mpMRI correlated with whole mount histology.

Radiat Oncol. 2024-7-29

[3]
Prostate cancer detection and segmentation on MRI using non-local mask R-CNN with histopathological ground truth.

Med Phys. 2023-12

[4]
A 3D-2D Hybrid U-Net Convolutional Neural Network Approach to Prostate Organ Segmentation of Multiparametric MRI.

AJR Am J Roentgenol. 2021-1

[5]
Automated prostate multi-regional segmentation in magnetic resonance using fully convolutional neural networks.

Eur Radiol. 2023-7

[6]
Combined Transfer Learning and Test-Time Augmentation Improves Convolutional Neural Network-Based Semantic Segmentation of Prostate Cancer from Multi-Parametric MR Images.

Comput Methods Programs Biomed. 2021-10

[7]
A deep dive into understanding tumor foci classification using multiparametric MRI based on convolutional neural network.

Med Phys. 2020-9

[8]
Semi-automatic classification of prostate cancer on multi-parametric MR imaging using a multi-channel 3D convolutional neural network.

Eur Radiol. 2019-8-29

[9]
Clinically significant prostate cancer detection and segmentation in low-risk patients using a convolutional neural network on multi-parametric MRI.

Eur Radiol. 2020-12

[10]
Multi-scale statistical deformation based co-registration of prostate MRI and post-surgical whole mount histopathology.

Med Phys. 2024-4

引用本文的文献

[1]
Deep Learning Techniques for Prostate Cancer Analysis and Detection: Survey of the State of the Art.

J Imaging. 2025-7-28

[2]
The role of explainable artificial intelligence in disease prediction: a systematic literature review and future research directions.

BMC Med Inform Decis Mak. 2025-3-4

[3]
Automatic Characterization of Prostate Suspect Lesions on T2-Weighted Image Acquisitions Using Texture Features and Machine-Learning Methods: A Pilot Study.

Diagnostics (Basel). 2025-1-4

[4]
Automatic segmentation of white matter lesions on multi-parametric MRI: convolutional neural network versus vision transformer.

BMC Neurol. 2025-1-3

[5]
ProLesA-Net: A multi-channel 3D architecture for prostate MRI lesion segmentation with multi-scale channel and spatial attentions.

Patterns (N Y). 2024-5-15

[6]
Comparison of data fusion strategies for automated prostate lesion detection using mpMRI correlated with whole mount histology.

Radiat Oncol. 2024-7-29

[7]
Catalyzing Precision Medicine: Artificial Intelligence Advancements in Prostate Cancer Diagnosis and Management.

Cancers (Basel). 2024-5-9

[8]
Advantage of whole-mount histopathology in prostate cancer: current applications and future prospects.

BMC Cancer. 2024-4-11

[9]
Algorithms for classification of sequences and segmentation of prostate gland: an external validation study.

Abdom Radiol (NY). 2024-4

[10]
Kernel-weighted contribution: a method of visual attribution for 3D deep learning segmentation in medical imaging.

J Med Imaging (Bellingham). 2023-9

本文引用的文献

[1]
Deep learning for fully automatic detection, segmentation, and Gleason grade estimation of prostate cancer in multiparametric magnetic resonance images.

Sci Rep. 2022-2-22

[2]
A Cascaded Deep Learning-Based Artificial Intelligence Algorithm for Automated Lesion Detection and Classification on Biparametric Prostate Magnetic Resonance Imaging.

Acad Radiol. 2022-8

[3]
Explainable Deep Learning Models in Medical Image Analysis.

J Imaging. 2020-6-20

[4]
Segmentation of the Prostate Transition Zone and Peripheral Zone on MR Images with Deep Learning.

Radiol Imaging Cancer. 2021-5

[5]
The impact of the co-registration technique and analysis methodology in comparison studies between advanced imaging modalities and whole-mount-histology reference in primary prostate cancer.

Sci Rep. 2021-3-12

[6]
Isotropic Expansion of the Intraprostatic Gross Tumor Volume of Primary Prostate Cancer Patients Defined in MRI-A Correlation Study With Whole Mount Histopathological Information as Reference.

Front Oncol. 2020-11-23

[7]
Comparison of Prostate MRI Lesion Segmentation Agreement Between Multiple Radiologists and a Fully Automatic Deep Learning System.

Rofo. 2021-5

[8]
Autonomous Detection and Classification of PI-RADS Lesions in an MRI Screening Population Incorporating Multicenter-Labeled Deep Learning and Biparametric Imaging: Proof of Concept.

Diagnostics (Basel). 2020-11-14

[9]
Variability in accuracy of prostate cancer segmentation among radiologists, urologists, and scientists.

Cancer Med. 2020-10

[10]
Clinically significant prostate cancer detection and segmentation in low-risk patients using a convolutional neural network on multi-parametric MRI.

Eur Radiol. 2020-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索