Suppr超能文献

后验预测检验的预期行为及其意外解释。

The Expected Behaviors of Posterior Predictive Tests and Their Unexpected Interpretation.

机构信息

GeoBio-Center, Ludwig-Maximilians-Universität München, Richard-Wagner-Str. 10, Munich 80333, Germany.

Department of Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, Richard-Wagner-Str. 10, Munich 80333, Germany.

出版信息

Mol Biol Evol. 2024 Mar 1;41(3). doi: 10.1093/molbev/msae051.

Abstract

Poor fit between models of sequence or trait evolution and empirical data is known to cause biases and lead to spurious conclusions about evolutionary patterns and processes. Bayesian posterior prediction is a flexible and intuitive approach for detecting such cases of poor fit. However, the expected behavior of posterior predictive tests has never been characterized for evolutionary models, which is critical for their proper interpretation. Here, we show that the expected distribution of posterior predictive P-values is generally not uniform, in contrast to frequentist P-values used for hypothesis testing, and extreme posterior predictive P-values often provide more evidence of poor fit than typically appreciated. Posterior prediction assesses model adequacy under highly favorable circumstances, because the model is fitted to the data, which leads to expected distributions that are often concentrated around intermediate values. Nonuniform expected distributions of P-values do not pose a problem for the application of these tests, however, and posterior predictive P-values can be interpreted as the posterior probability that the fitted model would predict a dataset with a test statistic value as extreme as the value calculated from the observed data.

摘要

已知序列或特征进化模型与经验数据之间的不匹配会导致偏差,并导致对进化模式和过程产生虚假结论。贝叶斯后验预测是一种灵活和直观的方法,可用于检测此类拟合不良的情况。然而,对于进化模型,尚未对后验预测检验的预期行为进行特征描述,这对于正确解释这些检验至关重要。在这里,我们表明,后验预测 P 值的预期分布通常不是均匀的,与用于假设检验的频率主义 P 值相反,并且极端后验预测 P 值通常比通常所认为的更能提供不良拟合的证据。后验预测在非常有利的情况下评估模型的充分性,因为模型是根据数据进行拟合的,这导致预期分布通常集中在中间值附近。然而,P 值的非均匀预期分布不会对这些检验的应用造成问题,并且后验预测 P 值可以解释为拟合模型预测具有检验统计值的数据集的后验概率,该检验统计值与从观察数据计算得出的值一样极端。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b2b/10946647/df5d35a49775/msae051f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验