Suppr超能文献

贝叶斯模型在系统发育学中的充分性与选择

Bayesian model adequacy and choice in phylogenetics.

作者信息

Bollback Jonathan P

机构信息

Department of Biology, University of Rochester, NY 14627, USA.

出版信息

Mol Biol Evol. 2002 Jul;19(7):1171-80. doi: 10.1093/oxfordjournals.molbev.a004175.

Abstract

Bayesian inference is becoming a common statistical approach to phylogenetic estimation because, among other reasons, it allows for rapid analysis of large data sets with complex evolutionary models. Conveniently, Bayesian phylogenetic methods use currently available stochastic models of sequence evolution. However, as with other model-based approaches, the results of Bayesian inference are conditional on the assumed model of evolution: inadequate models (models that poorly fit the data) may result in erroneous inferences. In this article, I present a Bayesian phylogenetic method that evaluates the adequacy of evolutionary models using posterior predictive distributions. By evaluating a model's posterior predictive performance, an adequate model can be selected for a Bayesian phylogenetic study. Although I present a single test statistic that assesses the overall (global) performance of a phylogenetic model, a variety of test statistics can be tailored to evaluate specific features (local performance) of evolutionary models to identify sources failure. The method presented here, unlike the likelihood-ratio test and parametric bootstrap, accounts for uncertainty in the phylogeny and model parameters.

摘要

贝叶斯推断正成为系统发育估计中一种常见的统计方法,原因之一是它能够使用复杂的进化模型对大型数据集进行快速分析。方便的是,贝叶斯系统发育方法使用当前可用的序列进化随机模型。然而,与其他基于模型的方法一样,贝叶斯推断的结果取决于假设的进化模型:不充分的模型(与数据拟合不佳的模型)可能导致错误的推断。在本文中,我提出了一种贝叶斯系统发育方法,该方法使用后验预测分布来评估进化模型的充分性。通过评估模型的后验预测性能,可以为贝叶斯系统发育研究选择一个合适的模型。虽然我提出了一个评估系统发育模型整体(全局)性能的单一检验统计量,但也可以定制各种检验统计量来评估进化模型的特定特征(局部性能),以识别失败的根源。与似然比检验和参数自展法不同,这里提出的方法考虑了系统发育和模型参数中的不确定性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验