School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.
Zhangjiang Laboratory, Shanghai 201210, China.
Proc Natl Acad Sci U S A. 2024 Mar 12;121(11):e2312596121. doi: 10.1073/pnas.2312596121. Epub 2024 Mar 4.
Self-assembled DNA crystals offer a precise chemical platform at the ångström-scale for DNA nanotechnology, holding enormous potential in material separation, catalysis, and DNA data storage. However, accurately controlling the crystallization kinetics of such DNA crystals remains challenging. Herein, we found that atomic-level 5-methylcytosine (5mC) modification can regulate the crystallization kinetics of DNA crystal by tuning the hybridization rates of DNA motifs. We discovered that by manipulating the axial and combination of 5mC modification on the sticky ends of DNA tensegrity triangle motifs, we can obtain a series of DNA crystals with controllable morphological features. Through DNA-PAINT and FRET-labeled DNA strand displacement experiments, we elucidate that atomic-level 5mC modification enhances the affinity constant of DNA hybridization at both the single-molecule and macroscopic scales. This enhancement can be harnessed for kinetic-driven control of the preferential growth direction of DNA crystals. The 5mC modification strategy can overcome the limitations of DNA sequence design imposed by limited nucleobase numbers in various DNA hybridization reactions. This strategy provides a new avenue for the manipulation of DNA crystal structure, valuable for the advancement of DNA and biomacromolecular crystallography.
自组装 DNA 晶体在 ångström 尺度上为 DNA 纳米技术提供了一个精确的化学平台,在物质分离、催化和 DNA 数据存储方面具有巨大的潜力。然而,准确控制这种 DNA 晶体的成核动力学仍然具有挑战性。在这里,我们发现,通过调节 DNA 基序的杂交速率,原子级别的 5-甲基胞嘧啶(5mC)修饰可以调节 DNA 晶体的成核动力学。我们发现,通过操纵 DNA 张力蛋白三角形基序粘性末端的 5mC 修饰的轴向和组合,我们可以获得一系列具有可控形态特征的 DNA 晶体。通过 DNA-PAINT 和 FRET 标记的 DNA 链置换实验,我们阐明了原子级别的 5mC 修饰增强了单分子和宏观尺度上 DNA 杂交的亲和常数。这种增强可以用于动力学驱动控制 DNA 晶体优先生长方向。5mC 修饰策略可以克服各种 DNA 杂交反应中受碱基数量限制的 DNA 序列设计的局限性。该策略为 DNA 晶体结构的操控提供了新途径,对 DNA 和生物大分子晶体学的发展具有重要意义。