Suppr超能文献

理解跨越科学期刊的学者轨迹。

Understanding scholar-trajectories across scientific periodicals.

机构信息

Copenhagen Center for Social Data Science, University of Copenhagen, Copenhagen, Denmark.

Department of Sociology, University of Copenhagen, Copenhagen, Denmark.

出版信息

Sci Rep. 2024 Mar 4;14(1):5309. doi: 10.1038/s41598-024-54693-7.

Abstract

Despite the rapid growth in the number of scientific publications, our understanding of author publication trajectories remains limited. Here we propose an embedding-based framework for tracking author trajectories in a geometric space that leverages the information encoded in the publication sequences, namely the list of the consecutive publication venues for each scholar. Using the publication histories of approximately 30,000 social media researchers, we obtain a knowledge space that broadly captures essential information about periodicals as well as complex (inter-)disciplinary structures of science. Based on this space, we study academic success through the prism of movement across scientific periodicals. We use a measure from human mobility, the radius of gyration, to characterize individual scholars' trajectories. Results show that author mobility across periodicals negatively correlates with citations, suggesting that successful scholars tend to publish in a relatively proximal range of periodicals. Overall, our framework discovers intricate structures in large-scale sequential data and provides new ways to explore mobility and trajectory patterns.

摘要

尽管科学出版物的数量迅速增长,但我们对作者发表轨迹的理解仍然有限。在这里,我们提出了一个基于嵌入的框架,用于在几何空间中跟踪作者的轨迹,该框架利用了在出版物序列中编码的信息,即每个学者的连续出版物清单。使用大约 30,000 名社交媒体研究人员的出版物历史记录,我们获得了一个知识空间,该空间广泛地捕获了期刊的基本信息以及科学的复杂(内部)学科结构。基于这个空间,我们通过跨越科学期刊的运动来研究学术成功。我们使用来自人类流动性的一个度量,即回转半径,来描述单个学者的轨迹。结果表明,作者在期刊之间的移动与引文呈负相关,这表明成功的学者倾向于在相对接近的期刊范围内发表文章。总的来说,我们的框架在大规模序列数据中发现了复杂的结构,并为探索移动性和轨迹模式提供了新的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee81/10912201/f5a130feecc7/41598_2024_54693_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验