Suppr超能文献

静息态功能磁共振成像数据的状态转移动力学:模型比较与测试-再测试分析。

State-transition dynamics of resting-state functional magnetic resonance imaging data: model comparison and test-to-retest analysis.

机构信息

Institute for Artificial Intelligence and Data Science, University at Buffalo, State University of New York at Buffalo, 215 Lockwood Hall, Buffalo, 14260, NY, USA.

Department of Mathematics , University at Buffalo, State University of New York at Buffalo, 244 Mathematics Building , Buffalo, 14260, NY, USA.

出版信息

BMC Neurosci. 2024 Mar 4;25(1):14. doi: 10.1186/s12868-024-00854-3.

Abstract

Electroencephalogram (EEG) microstate analysis entails finding dynamics of quasi-stable and generally recurrent discrete states in multichannel EEG time series data and relating properties of the estimated state-transition dynamics to observables such as cognition and behavior. While microstate analysis has been widely employed to analyze EEG data, its use remains less prevalent in functional magnetic resonance imaging (fMRI) data, largely due to the slower timescale of such data. In the present study, we extend various data clustering methods used in EEG microstate analysis to resting-state fMRI data from healthy humans to extract their state-transition dynamics. We show that the quality of clustering is on par with that for various microstate analyses of EEG data. We then develop a method for examining test-retest reliability of the discrete-state transition dynamics between fMRI sessions and show that the within-participant test-retest reliability is higher than between-participant test-retest reliability for different indices of state-transition dynamics, different networks, and different data sets. This result suggests that state-transition dynamics analysis of fMRI data could discriminate between different individuals and is a promising tool for performing fingerprinting analysis of individuals.

摘要

脑电图(EEG)微状态分析需要在多通道 EEG 时间序列数据中找到准稳定且通常重复的离散状态的动态,并将估计的状态转换动力学的特性与认知和行为等可观察量相关联。虽然微状态分析已被广泛用于分析 EEG 数据,但由于此类数据的时间尺度较慢,其在功能磁共振成像(fMRI)数据中的应用仍然较少。在本研究中,我们将 EEG 微状态分析中使用的各种数据聚类方法扩展到健康人类的静息状态 fMRI 数据,以提取其状态转换动力学。我们表明,聚类的质量与 EEG 数据的各种微状态分析相当。然后,我们开发了一种检查 fMRI 会话之间离散状态转换动力学的测试-重测可靠性的方法,并表明对于不同的状态转换动力学指标、不同的网络和不同的数据集,个体内的测试-重测可靠性高于个体间的测试-重测可靠性。这一结果表明,fMRI 数据的状态转换动力学分析可以区分不同的个体,是对个体进行指纹分析的有前途的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ffb6/10913599/bff0b0c1a997/12868_2024_854_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验