Jin Hongni, Merz Kenneth M
Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States.
Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States.
J Chem Theory Comput. 2024 Mar 26;20(6):2551-2558. doi: 10.1021/acs.jctc.4c00063. Epub 2024 Mar 5.
We report a Fe(II) data set of more than 23000 conformers in both low-spin (LS) and high-spin (HS) states. This data set was generated to develop a neural network model that is capable of predicting the energy and the energy splitting as a function of the conformation of a Fe(II) organometallic complex. In order to achieve this, we propose a type of scaled electronic embedding to cover the long-range interactions implicitly in our neural network describing the Fe(II) organometallic complexes. For the total energy prediction, the lowest MAE is 0.037 eV, while the lowest MAE of the splitting energy is 0.030 eV. Compared to baseline models, which only incorporate short-range interactions, our scaled electronic embeddings improve the accuracy by over 70% for the prediction of the total energy and the splitting energy. With regard to semiempirical methods, our proposed models reduce the MAE, with respect to these methods, by 2 orders of magnitude.
我们报告了一个包含超过23000个处于低自旋(LS)和高自旋(HS)状态构象的Fe(II)数据集。生成这个数据集是为了开发一个神经网络模型,该模型能够根据Fe(II)有机金属配合物的构象预测能量和能量分裂。为了实现这一点,我们提出了一种缩放电子嵌入方法,以在描述Fe(II)有机金属配合物的神经网络中隐式涵盖长程相互作用。对于总能量预测,最低平均绝对误差(MAE)为0.037 eV,而分裂能的最低MAE为0.030 eV。与仅包含短程相互作用的基线模型相比,我们的缩放电子嵌入在总能量和分裂能预测方面将准确率提高了70%以上。对于半经验方法而言,我们提出的模型相对于这些方法将MAE降低了2个数量级。